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Abstract: Battery pack is an important part of the energy system of electric 
vehicles, and ensuring its safety is of great significance to the intelligent 
development of electric vehicles and human life and property. Detecting and 
ensuring the safety of battery pack in the energy system has become a research 
hotspot in the field of power batteries. This paper proposes a new composite 
deep neural network attention after CNN-LSTM (AACNN-LSTM) based on 
the characteristics and limitations of long- and short-term memory (LSTM) 
neural network, one-dimensional convolution neural network (1D-CNN) and 
other methods. We have carried out comparative experiments such as data 
division of different life stages, ablation experiments of multiple architecture 
combinations, and comparison with different types of algorithms. The results 
show that compared with other methods, the precision is significantly improved 
and the operation efficiency is maintained. Finally, the proposed health state 
estimation method is verified by three different battery accelerated aging test 
datasets. The experimental results show that the proposed method shows 
excellent battery health state estimation performance and good robustness 
under different working conditions and different number of training cycles. 

Keywords: life prediction; attention mechanism; time series prediction; LSTM. 
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1 Introduction 

Lithium-ion batteries have been widely used in portable consumer electronics and  
high-power electric vehicles because of their excellent energy density, high working 
voltage and low self-discharge rate (Zhou et al., 2022). The endurance of lithium battery 
is directly linked to the energy density; however, high energy density is also accompanied 
by high risk (Xue et al., 2022). In the field of consumer electronics, thermal runaway of 
the battery pack of the energy system is one of its biggest problems. Considering that 
electric vehicles work in a complex environment, how to ensure the reliability and safety 
of the battery pack will be a huge challenge. Overcharge and discharge, sensor fault, 
external short circuit (ESC), internal short circuit (ISC) and other problems are common 
faults in lithium-ion battery pack fault (Wang et al., 2022). Short-circuit fault is more 
dangerous than overcharge and discharge fault. Short-circuit fault is usually accompanied 
by abnormally high heating rate, which is easy to lead to runaway heating. The runaway 
of one battery will affect the safe operation of adjacent batteries and further trigger the 
chain exothermic reaction (Liu, 2022). In the short circuit fault, the ISC is considered to 
be one of the most fundamental reasons for the thermal runaway of the battery pack 
(Wang, 2022b). Therefore, it is very necessary to study the ISC of the battery pack. 

Data-driven prediction methods use potential features extracted from actual 
monitoring data to predict performance degradation trends, mainly including statistical 
analysis methods (Zhang, 2022) and machine learning methods (Wang, 2022a). 
Statistical analysis methods usually use statistical models or random processes to 
establish the relationship model between battery monitoring indicators and performance 
degradation, involving parameter estimation to obtain relevant statistical information 
such as probability (Wei et al., 2022) density, which requires relatively ideal assumptions 
and is prone to risk of information loss. 
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The machine learning method does not need to build a specific degradation model, 
and usually uses the original monitoring data for feature extraction and training to 
directly obtain the prediction results. However, the traditional machine learning methods 
have different ability of model fitting, and the workload of model selection is large. 
Especially for the multi-dimensional time series prediction problem of PEMFC (Liu, 
2022) life prediction, there are complex nonlinear relationships between the 
characteristics of each dimension and between each time step, and the original data often 
has problems such as noise and deviation. The traditional machine learning method 
cannot take these characteristics into account at the same time (Zhou, 2022), and the 
prediction accuracy needs to be improved. 

The life prediction of PEMFC is based on the physical and chemical process (Liang, 
2022), operation status, environmental conditions and working conditions of the battery 
to predict when to stop effective work or failure (Duan, 2021). However, in the process of 
battery operation, there are many factors that affect the life of the battery. The reasons for 
performance degradation include not only low temperature startup, cycle start and stop 
(Wang et al., 2021), temperature and humidity fluctuations, insufficient gas supply, 
insufficient humidification, diffusion layer flooding, overload work, etc., but also ‘single 
low’ and ‘low hydrogen’ will cause irreversible damage to the performance and life of 
the battery. Its effective life prediction faces great challenges (Tan and Wei, 2021) 
around these complex factors. The prediction methods involved in relevant research at 
home and abroad can be divided into model-driven methods and data-driven methods (Li 
et al., 2021). 

The model-based observer method simulates the characteristics of battery capacity 
attenuation through the mathematical model of the battery, and further combines the 
model with advanced filtering algorithm to achieve accurate SOH estimation (Yao et al., 
2021). The commonly used battery mathematical model includes the equivalent circuit 
model and the electrochemical model. The equivalent circuit model uses the basic 
electronic components to simulate the external output characteristics of the battery, while 
the electrochemical model describes the dynamic characteristics inside the battery 
through a series of complex partial differential equations (He, 2021). The equivalent 
circuit model usually uses the internal resistance growth of the battery to describe the 
SOH, such as Ze et al. (Liu, 2021) combined the second-order equivalent circuit model 
with the adaptive square root unscented Kalman filter algorithm to achieve the joint 
estimation of battery SOH and state of charge (SOC), but this model cannot directly 
describe the capacity decay or the change of internal characteristics of the battery. The 
electrochemical model can directly reflect the internal aging mechanism of the battery, 
such as the increase of solid electrolyte interface (SEI), lithium electroplating and the loss 
of active materials, and characterise the aging state of the battery from the perspective of 
electrochemistry (Zhang, 2021b). Lawder et al. (Qian, 2021) combined the pseudo-two-
dimensional model of porous electrode with the side reaction of SEI formation to 
simulate the growth process of SEI film inside the battery. On this basis, the 
mathematical reconstruction method of the pseudo-two-dimensional model was applied 
to reduce the complexity of the model and reduce the calculation cost. The results show 
that the method is robust to various chemical components and battery types. The  
single-particle model is a simplification based on the full-order pseudo-two-dimensional 
model (Chen et al., 2020). By ignoring the kinetic equation in the electrolyte and 
assuming that the lithium ion concentration and potential in the electrolyte phase remain 
unchanged, the calculation cost is greatly reduced. Li et al. (Zhou and Wang, 2020) 
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proposed a battery aging model combining lithium ion loss model and single particle 
model, which realised rapid capacity prediction with the number of cycles and 
temperature changes, and also provided quantitative information on the formation and 
expansion of SEI film, as well as the resulting battery capacity degradation and power 
loss, which can be directly applied to the battery SOH estimation. The above  
model-based method has high accuracy and can describe the internal and external 
characteristics of the battery, but its equivalent circuit model is difficult to describe the 
capacity characteristics of the battery, while the electrochemical model is limited by 
complex partial differential equations and highly coupled model parameters, which 
makes its solution more difficult, so the model-based method is difficult to get practical 
application. 

To sum up, this paper proposes an algorithm based on improved firefly algorithm to 
optimise BP neural network to estimate the health status of lithium batteries, optimises 
the steps of firefly movement in the firefly algorithm through Levy flight, and uses 
NASA Ames Research Center dataset to train and predict the algorithm, and evaluate the 
estimation effect of the algorithm. 

2 Method and principle 

2.1 ISC fault detection algorithm of battery pack based on Spearman rank 
correlation and TBi-GRU neural network 

As shown in Figure 1, the TBi-GRU model used in this paper is composed of three 
parallel bi-GRU (bidirectional gating current unit, bi-GRU) models with 1D convolution. 
The number of 1D convolutions is mainly determined by considering the size of the 
model and through actual experiments. The model has n inputs, and each layer of bi-GRU 
has 64,128 hidden neural units, one dropout layer, and the output layer predicts n values. 
The convolution layer is mainly used to extract the local feature information of the 
feature time series, and bi-GRU is used to obtain the long-distance dependency 
relationship in the sequence. 

1 Convolution layer. The convolution layer uses the convolution check to convolution 
the input time series to obtain the local feature information of the time series and the 
time series matrix after feature extraction H ∈ Rk×n, among k is the length of the time 
series, n is the number of battery cells of the battery pack, and the convolution core S 
defined as S ∈ Rw×n, w. The size of the convolution kernel, which is calculated as 

( ): 1i i i hy f S H c+ −= ⋅ +  (1) 

 Among, yi represents the second feature of the time series output by convolution. c is 
offset, • is the dot product of matrix. f is the activation function. This article uses the 
LeakyReLUs activation function 

2 Bi-GRU layer. The bi-GRU used in this paper is composed of two gated recurrent 
unit (GRU) with the same structure (Hou and Fan, 2020) connected in reverse 
sequence. It divides the neurons in the GRU network into forward layer and 
backward layer. In terms of time, it considers both the information on the positive 
time axis (Hou and Fan, 2020) and the information on the negative time axis. The  
bi-GRU network structure is defined by formula (4). In general, the performance of 
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GRU and long- and short-term memory (LSTM) is similar (Ruan, 2020), but since 
the units in GRU can control the flow of information through reset and update gates, 
compared with LSTM, which needs forgetting gates, input gates and output gates, 
GRU has fewer parameters, and training is easier to converge, which can effectively 
reduce the training time. 

(
(

( )( )
( )

1

1

1

1

tanh

1

t z t z t z

t r t r t r
t

t h t h ht t

t t t tt

z σ W x U h b
r σ W x U h b

h
h W x U br h

h h z hz

−

−

−

−

= + +
 = + +=  = + +
 = +−

 
 

 (2) 

 Among, ht on behalf of t the corresponding state of time can be divided into forward 
and backward in Bi-GRU, zt, rt represents the update door and reset door, ◦ is the 
Hadamard product, Wr, Wh, Uz, Ur, Uh represent the parameter matrix and cycle 
matrix of the model respectively. bz, br, bh is the offset vector, σ represents sigmoid 
function, and tanh represents hyperbolic tangent function. 

Figure 1 Model network structure (see online version for colours) 

 

As shown in Figure 2, multi-dimensional time series Am, group is m dimension is n, 
Count Reg b, m. The length of represents both m each group of battery data is processed 
[ab = ab1, ab2, …, abn] with b data for channels, [ab = ab1, ab2, …, abn]. The data in 
corresponds to the extracted feature sequence. Length b it determines the number of 
models from input to prediction. During training, the loss is calculated using the input 
and current output of the next time point. During testing, the difference between the 
output of the model and the input of the current time is used to calculate the predicted 
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model anomaly detection results, and the baseline threshold is calculated and recorded. In 
practice, independent modelling is needed for the input data of each battery pack to 
facilitate the fine-tuning of each model in the later stage. Because the number of batteries 
in each battery pack is not the same, the time required for training to reach our needs is 
also different. Independent training can prevent the occurrence of some model  
over-fitting phenomenon. 

Figure 2 Calculation process of input and output of visual model (see online version for colours) 

 

In this paper, the process of fault detection is divided into three stages, namely, the 
process of fault prediction based on TBi-GRU model, the process of fault detection based 
on multi-channel optimisation and the process of fault location based on the results of 
detection (Lu, 2020). The detection process is shown in Figure 5. 

1 Phase 1. Fault prediction. Fault characteristics to be detected y as the input of the 
model, obtain the prediction results ypre. Calculate the prediction error according to 
formula (5) yerror. Then calculate the dynamic threshold according to the mean and 
standard deviation of the prediction error (Xu, 2020). 

error prey y y= −  (3) 

2 Phase 2. Multi-channel optimisation. Multi-channel optimisation algorithm refers to 
the fusion of the detection results of different battery packs (Li, 2020b), and the 
correction of the prediction results based on certain rules to reduce false positives. 
The rules are as follows. 
a There is only one ISC fault of multiple battery packs of electric vehicles in the 

same detection period (Wang, 2020). 
b In the same group, there is no large number of abnormalities with similar 

amplitude in the same detection period. It should be noted that when only single 
battery pack detection is performed (Li, 2020a), it only executes rule. 

b The model proposed in this paper can generate multiple models for all groups 
independently (Ovshinsky et al., 1993), the model can be upgraded and replaced 
freely, and each model can independently output results for test data, and the 
results of each channel can be fused on the basis of dynamic threshold to obtain 
the overall optimal. 
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3 Phase 3. Fault location (Zheng et al., 2019). Based on the threshold th of multi-
channel optimisation, obtain the time of ISC occurrence TimeISC according to 
formula (6). 

{ }| ( )ISC errorTime t y t th= >  (4) 

 According to formula (5), the result is the serial number of the battery node with 
abnormal storage characteristics i and failure time t, Celli(t) ∈ yerror(t) is the 
correlation between one battery cell and the next battery cell in the battery pack. 

{ }, | & & ( )ISC iresult i t t Time Cell t th= ∈ >  (5) 

If the ISC fault occurs to the no. 3 battery cell, the characteristic Cell3 of no. 3 and no. 4 
will increase, and the characteristic Cell2 of no. 2 and no. 3 will also increase. By finding 
two increased fault trends, the algorithm can distinguish the specific faulty battery cells in 
the lithium-ion battery pack for early warning. If multiple batteries fail at the same time, 
this method is still valid. 

Based on the prediction results, the abnormal area of ISC is divided in the original 
data, and an unsupervised dynamic threshold calculation method is proposed based on the 
threshold calculation method of three standard deviations (Chen et al., 2019a). The 
calculation process is 

( ) ( )( )3train traint tth λ μ σerr err= + ×  (6) 

where th is the threshold to be calculated, (μtrain(errt)) is the mean value of prediction 
error in training, σtrain(errt) is the standard deviation of prediction error in training, λ is the 
dynamic coefficient, and its corresponding mathematical expression is 

( ) ( )
( ) ( )

2 ? :

test traint t

test traint t

A μ μerr err
B σ σerr err
λ A B A B

= 
= 
= × ≤ 

 (7) 

Among, μtest(errt) σtest(errt) represent the mean and standard deviation of the prediction 
error in the test, and the abnormal threshold λ with changes A. The ratio of the average 
value of storage test and training, Ratio of standard deviation between storage test and 
training. 

2.2 Overall architecture mechanism of AACNN-LSTM model 

According to the Chinese national standard GBT 38914-2020, the evaluation criteria for 
the service life durability test of PEMFC for vehicles stipulates that the battery life is 
considered to be terminated when the average voltage of each cell is reduced by 10% 
under the reference current (Chen et al., 2019b). At the same time, PEMFC can obtain 
monitoring parameters from various sensors during operation, such as voltage, current, 
coolant temperature, air pressure, hydrogen pressure, stack humidity, etc. The change of 
each monitoring parameter may affect the output voltage of the battery. Moreover, the 
voltage attenuation of the battery does not change linearly, and its voltage does not 
change significantly in the early life, and only in the middle and late life will there be 
significant attenuation. 
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Figure 3 Main framework of the model 

 

Figure 4 Attention after CNN-LSTM combination layer 

 

In view of these characteristics of PEMFC, this paper proposes a multidimensional time 
series prediction model AACNN-LSTM based on CNN-LSTM-Attention (Chen, 2019) 
composite network. The overall architecture is shown in Figure 3. First, use  
1D-CNN to smooth and filter, then use LSTM layer to learn the temporal relationship 
between multi-dimensional vectors, and finally introduce attention mechanism to conduct 
adaptive weighted learning of multi-dimensional vectors at different time steps from a 
global perspective, to determine which features play a key role in the prediction results. 
Finally, the model takes the output voltage of PEMFC as the prediction result for life 
assessment, and constructs an end-to-end depth regression model. 
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For multi-dimensional time series data, the ‘importance’ of each time step vector is 
different. Using the Attention mechanism, you can learn different weights of each vector. 
More importantly, you can adaptively learn dynamic weights in different contexts (each 
Attention vector is also multi-dimensional). The AACNN-LSTM proposed in this paper 
introduces this attention mechanism, and explores the effect of Attention location on the 
prediction performance of the model. The first is to set it after the feature extraction layer 
(i.e. CNNLSTM) of the model (before the output layer) (as shown in Figure 4). The input 
sequence is multiple sets of monitoring data vectors in the time window, expressed as x1, 
x2, …, xt. As shown in Figure 3. The input sequence passes through CNN-LSTM to 
obtain the corresponding hidden layer vector h1, h2, …, ht. Then input the attention layer 
and calculate the attention weight distribution value of each input a1, a2, …, at. So as to 
obtain new hidden layer features by weighting y1, y2, …, yt. Finally, the sum of yi is 
reduced to the prediction step size through the full connection layer, and the relu function 
is activated to obtain the prediction voltage v as the output of the model. Specifically 
described as: 

( )( )i ih LSTM CNN x=  (8) 

( )tanh q i qi W h bu +=  (9) 

( )

( )
1

exp

exp

T
si

i t
T

si
s

u u
a

u u
=

=


 (10) 

i i iy a h= ⊗  (11) 

1

t

i
i

v relu Dense y
=

  
=       

  (12) 

Among: Wq is a linear transformation matrix, bq is the offset, both will be entered hi 
convert to attention query vector ui; yi is the product of vectors per element, and the result 
is still in vector form. 

Figure 5 The flow chart of battery sensor fault diagnosis (see online version for colours) 
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2.3 Fault diagnosis of battery sensor based on GAPSO-FNN algorithm 

The realisation of each function of the battery depends on the sensor inside the battery. If 
the sensor fails, it will cause the BMS (Li et al., 2019) to function abnormally and affect 
the safe and stable operation of the battery management system (Zeng, 2019). The sensor 
fault diagnosis of the battery is mainly divided into three parts, which are the battery 
sensor data acquisition, feature selection and extraction, and fault diagnosis. The battery 
sensor fault diagnosis process is shown in Figure 5. 

Figure 6 Flow chart of GAPSO-FNN algorithm (see online version for colours) 

 

Although the particle swarm optimisation algorithm has the advantages of small 
parameters and fast convergence speed, it is widely used in intelligent optimisation, but it 
is often limited because it is easy to fall into the local optimisation problem (Wang, 
2019). In order to solve the local optimisation problem, the particle swarm optimisation 
algorithm based on genetic algorithm is introduced, which can help to jump out of the 
local optimisation and continue to search for other regions (Surya et al., 2021). The fuzzy 
neural network combines fuzzy reasoning and neural network (Li, 2019), has strong  
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self-learning ability and adaptive ability, and can continuously modify the membership 
function of fuzzy subsets. In order to have the adaptive ability and solve the local 
optimisation problem, this paper combines particle swarm optimisation and fuzzy neural 
network with genetic idea, which can not only improve the local search ability and the 
global search speed, but also realise the efficient use of the hybrid algorithm, making the 
hybrid algorithm more applicable to engineering practice. The algorithm flow chart of 
GAPSOFNN is shown in Figure 6. The GAPSO optimisation algorithm is composed of 
two parts: GA optimisation algorithm and PSO optimisation algorithm. This algorithm 
not only avoids the disadvantage of poor convergence of PSO algorithm, but also 
increases the information sharing mechanism between individuals, reducing the time 
spent in optimisation. 

3 Experiment 

3.1 Analysis of experimental data 

The heat management system of PEMFC controls the heat balance in the reaction 
process, thus ensuring the stable working temperature of the stack. When the working 
environment temperature is low, the electrochemical reaction activity will decrease, 
resulting in an increase in impedance, and the overall performance of the stack will 
decline. However, if the temperature is too high, it will lead to catalyst degradation and 
battery softening (Liang, 2022; Duan, 2021). Therefore, temperature has a great influence 
on the output power and aging of PEMFC. It involves air temperature management and 
water heat management, and the main monitoring parameters are: hydrogen inlet 
temperature, hydrogen outlet temperature, air inlet temperature, and air outlet 
temperature; Circulating water outlet pressure, circulating water inlet pressure, hydrogen 
humidification temperature, air humidification temperature, cathode internal humidity, 
anode internal humidity, stack inlet water temperature, stack outlet water temperature, 
etc. Excessive anode differential pressure of PEMFC, high thermal conductivity of the 
stack, delayed response of the reaction gas, and blockage of the flow field may lead to 
under-gas phenomenon. Due to ‘lack of oxygen’, the hot area of the air inlet at the 
cathode side is higher than other parts of the bipolar plate, which leads to the aging of the 
membrane electrode. In serious cases, reverse electrode accidents will occur, which not 
only affects the service life, but also brings potential safety hazards (Liang, 2022; Duan, 
2021). Generally speaking, the excess gas coefficient is the key factor affecting the 
performance of PEMFC. The efficiency of PEMFC power generation can be improved by 
accurately controlling the gas supply and hydrogen excess coefficient (the flow and 
proportion of air and hydrogen) of the stack, and the aging of membrane electrode caused 
by insufficient gas can be avoided at the same time. Therefore, the state of the reaction 
gas supply is closely related to the aging of PEMFC. The main monitoring parameters 
are: hydrogen inlet pressure, hydrogen outlet pressure, air inlet pressure, air outlet 
pressure, etc. 
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3.1.1 Feature selection 
The data in this paper is from the bench life test of a PEMFC for three months. The 
monitoring parameters included in the data include: current density, hydrogen inlet 
pressure, hydrogen outlet pressure, air inlet pressure, air outlet pressure, circulating water 
outlet pressure, circulating water inlet pressure, hydrogen humidification temperature, air 
humidification temperature, cathode internal humidity, anode internal humidity, 
hydrogen inlet temperature, hydrogen outlet temperature, air inlet temperature, air outlet 
temperature, reactor inlet water temperature The water temperature at the stack outlet, 
etc. 

When the working conditions change, the chemical composition of the membrane 
electrode changes, the flow field of the bipolar plate changes, and the assembly pressure 
of the stack changes, the weight of each parameter on the life will change, making the 
prediction task more complex. Select some main monitoring parameters and draw the 
parameter correlation matrix shown in Figure 3 in the appendix, including voltage, air 
temperature difference, water temperature difference and air humidity. In the matrix, it 
can be found that the variation trend of the water temperature difference is the same as 
the attenuation trend of the battery voltage. Further draw the thermal diagram of water 
temperature difference and voltage, as shown in Figure 4 in the appendix. The ordinate is 
the water temperature difference, and the abscissa is the voltage, which more clearly 
shows this correlation. 

Finally, based on the above correlation analysis and the lack of data, seven bottom 
monitoring parameters were selected as the dataset for research, which are: average 
voltage value of the stack, stack density, hydrogen stack inlet pressure, hydrogen stack 
outlet pressure, air stack inlet pressure, air stack outlet pressure, and circulating water 
outlet pressure. Among them, the average voltage value of the stack is used as the output 
result for life assessment, and the other is used as the feature (in the time series model, 
the historical average voltage is also used as the feature to predict the future average 
voltage). 

3.1.2 Life interval division 
The change of average battery voltage with time in the experimental dataset is shown in 
Figure 7. The ordinate is the average voltage, and the abscissa is the date and time. It can 
be seen that the broken line around 2020-10-15 has changed significantly. At before 
2020-10-15, the average voltage of the battery changed around 620 mV, and the trend 
was stable. However, from 2020-10-15, the average voltage began to drop significantly, 
until it fell below 500 mV. In order to verify the applicability of the prediction model 
(whether the prediction accuracy of the model in different life stages of PEMFC meets 
the engineering needs), the data is divided into three intervals A, B, and C with 2020-10-
15 as the dividing point. Interval A is before 2020-10-15 (early stage), interval B is after 
2020-10-15 (middle and late stage), and interval C is the entire dataset. 
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Figure 7 Interval division of experimental dataset 

 

3.2 Analysis of simulation results 

When designing the battery sensor fault diagnosis scheme, we want the fitness value of 
the global optimal solution to be continuously reduced, even in the case of fewer 
iterations, it can reduce the battery sensor fault diagnosis time and significantly improve 
the accuracy, as shown in Figure 8. Because of the large difference between the centre 
temperature and the surface temperature of the battery, it is assumed that the temperature 
is at a fixed value (23). The results of the three fault diagnosis schemes are shown in 
Figure 9. As shown in Figures 10 and 11, the performance index comparison of the three 
fault diagnosis algorithms is shown in Table 1. 
Table 1 Performance index comparison of three fault diagnosis algorithms 

Name Accuracy 
(%) 

Specificity 
(%) 

Accuracy 
(%) 

Convergence 
time(s) 

Traditional neural network algorithm 75.3 74.9 70.0 3.76 
Fuzzy neural network algorithm 85.6 86.7 85.0 1.52 
GAPSO-FNN algorithm 94.7 92.3 95.0 1.23 

The input and output of the three algorithms in the above figure are the same, and the 
selection of input layer, hidden layer and output layer are also the same. As can be seen 
from Figure 9, the BP neural network cannot guarantee the global optimal value because  
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of its slow convergence speed and easy to fall into the local optimal value, so the actual 
value and the predicted value cannot completely coincide, and the error fluctuation is 
large. As can be seen from the confusion matrix, 30% of them are fault diagnosis errors. 
It can be seen from Figure 10 that the accuracy of fault diagnosis of fuzzy neural network 
is improved by 15% compared with BP neural network, and the training effect is good, 
which can well combine the empirical rules of expert system with neural network. It can 
be seen from Figure 11 and Table 1 that the GAPSO-fuzzy neural network algorithm 
incorporates the advantages of optimisation algorithm when training the model, which 
makes it adaptive and can ensure the global optimisation, and also makes the battery 
sensor fault diagnosis accuracy reach 95%, making the accuracy reach an ideal value. 

Figure 8 Optimisation results of GAPSO algorithm (see online version for colours) 

 

3.3 Robustness analysis 

In order to analyse the robustness of the proposed SOH estimation method under 
different training cycles, the LSTM network is pre-trained with the first 1/2, 1/3 and 1/4 
aging cycle data based on dataset 2, and the latter cycle data is used for SOH estimation. 
The experimental results are shown in Figure 12. The results of the training cycle show 
good consistency, and with the increase of the number of cycles, the SOH estimation 
results begin to show more obvious deviation. The less the number of training cycles, the 
error of the SOH estimation results of the proposed method will gradually increase. The 
increase of error is embodied in the second half of battery aging, which increases with the 
increase of cycle number. It can be seen from the specific error data in Table 2 that 
although reducing the number of training cycles will reduce the estimation accuracy of 
SOH, even if only the first quarter of the cycle data are used for network training, the 
final average estimation error can still be controlled within 4%. Therefore, the proposed 
method is robust to different training cycle number conditions. 

 

 



   

 

   

   
 

   

   

 

   

   88 J. Zhang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 9 BP neural network fault diagnosis, (a) effect chart of BP neural network training  
(b) confusion matrix of BP neural network fault diagnosis (see online version  
for colours) 
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Figure 10 Fault diagnosis of fuzzy neural network, (a) fuzzy neural network training diagram  
(b) confusion matrix of fuzzy neural fault diagnosis (see online version for colours) 
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Figure 11 GAPSO-FNN fault diagnosis, (a) training effect diagram of GAPSO-fuzzy neural 
network (b) confusion matrix for fault diagnosis of GAPSO-fuzzy neural network  
(see online version for colours) 
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Table 2 GRA-LSTM health state estimation error 

Dataset MAE (%) RMSE (%) 
1 (1/2) 0.63 0.97 
2 (1/2) 0.69 1.20 
3 (1/2) 0.95 1.23 
2 (1/3) 1.88 2.44 
2 (1/4) 2.87 3.87 

Figure 12 Experimental results of different training cycles, (a) estimated results (b) error  
(see online version for colours) 

  
(a)     (b) 

4 Conclusions 

This method combines the battery IC curve with LSTM neural network, analyses and 
extracts the aging characteristics of the battery using the battery charging IC curve, and 
further trains the LSTM neural network for SOH estimation. In order to improve the 
training efficiency of the neural network, the GRA method is further introduced to 
analyse and screen the aging characteristics. The proposed GRA-LSTM method was 
applied to verify and analyse the battery operation data under three different cycle aging 
conditions. 
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