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Abstract: In order to improve the operation efficiency of multi-UAV groups, 
this paper studies the mathematical modelling of multi-UAV scene planning, 
takes 3D LiDAR technology as the base navigation technology, and uses the 
bacterial foraging algorithm as the multi-objective optimisation algorithm. 
Moreover, this paper appropriately improves the defects of the algorithm, and 
introduces the bacterial population in the algorithm into the log-linear model to 
improve the two basic behaviours of the algorithm, the trend and the migration, 
so that the local search of the algorithm is more accurate. In addition, this paper 
introduces Gauss-Cauchy variation to ensure the diversity of bacterial 
populations and ensure that the algorithm results are close to the global optimal 
value. Through experimental research, it is known that the algorithm proposed 
in this paper can drive the drone to conform to the flight trajectory as a whole, 
achieve the expected fusion positioning accuracy, and meet the requirements of 
autonomous cruising. The average registration time is 120 milliseconds, which 
meets the real-time perception of the scene and pose estimation requirements 
during cruising. The experimental study shows that the multi-UAV scene 
planning method based on 3D LiDAR can effectively improve the optimal 
control effect of multi-UAV. 
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1 Introduction 

Generally discussed LiDAR is 3D imaging LiDAR. According to the different carrying 
platforms, it can be divided into spaceborne, airborne and ground-side. The spaceborne 
LiDAR mainly relies on satellite platforms, so it has a high orbit and can basically 
measure every corner of the Earth (Hongming et al., 2022). The airborne LiDAR is  
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mainly carried on the aircraft to collect large-scale point cloud data. Ground-side LiDAR 
is mainly used in the field of unmanned driving and surveying and mapping, and can be 
mounted on a car or fixed on a tripod. The data collected by LiDAR is in the form of a 
point cloud, which presents the scanning results of objects in the form of points, and each 
point contains three-dimensional information, generally including the reflection intensity 
and reflectivity of the object (Zohdi, 2020). Among them, unmanned aerial vehicle 
LiDAR (UAV LiDAR) is attracting the attention of researchers and engineers due to its 
low cost, convenient data collection and large measurement scene (Batinovic et al., 
2021). 

Integrate LiDAR, inertial measurement unit/global position system (IMU/GPS) and 
other instruments on the same UAV platform. After setting the communication mode 
between instruments and the control mode of the instrument, if you directly collect data, 
although it can be collected The data is obtained, but there are many problems with the 
data at this time: first, the coordinate information of the measured data is inaccurate, and 
even the data collected multiple times for the same feature scene will be different. These 
errors are mainly caused by the installation of each instrument. The difference between 
the position and the IMU/GPS will also cause errors such as the tilt and jitter of the 
aircraft’s attitude during the acquisition process, the changes of the satellites connected to 
the IMU/GPS on the aircraft, and each time the instrument is removed and reinstalled. 
Slight changes in position, etc. (Miao et al., 2020); secondly, for multi-sensor platforms, 
instruments may also influence each other. If there are multiple active remote sensors, the 
energy emitted by them may interfere with each other, or the energy emitted by active 
remote sensors may interfere with each other. It will be accepted by passive remote 
sensors and cause data errors (Wang et al., 2020); then the surrounding environment and 
ground objects in the acquisition process will also affect the generated data, such as 
sunlight noise, ambient light noise, bird flocks, and ground objects. Too dense or too 
sparse (Tang et al., 2018); finally, for a large feature scene, a single flight cannot 
complete the collection task, so it is necessary to consider how to design the route to 
ensure that the data collected multiple times can be well matched. In general, scientific 
research and engineering personnel currently need a set of reliable and effective UAV 
LiDAR system integration, data processing and acquisition solutions to ensure that the 
final data obtained has good quality (Petrlík et al., 2020). 

Comparing the UAV with the manned aircraft, it is found that the advantages of the 
UAV are reflected in its lighter weight and smaller size (Quan et al., 2020). There is no 
need to consider safety issues such as cockpit, environmental control, and ejection  
life-saving when constructing UAVs, and the tasks performed by UAVs are more single 
than that of manned aircraft (Le et al., 2019). Therefore, when UAVs fly and complete 
tasks more flexibility. Usually the mass of UAVs is between tens of grams and hundreds 
of kilograms. Some UAVs for strategic reconnaissance missions and ground attack 
missions are slightly higher in mass than other types of UAVs, and have better 
survivability on the battlefield. Because there is no need to take into account the 
physiological problems of the pilot, the manoeuvrability of the UAV has been improved 
to a certain extent, and the difficult manoeuvring work that the pilot cannot complete can 
be realised (Choi et al., 2020). The stealth design of the drone body makes it less difficult 
to perform tasks in different environments. The investment cost of UAV is low, and the 
investment cost in launch, recovery, use, maintenance, etc. is lower, and its dependence 
on the airport runway is small, and the difficulty of manoeuvring deployment is lower. 
When the drone is flying, the operator must use the ground control method to formulate 
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the flight plan and plan the flight route, and then send the relevant data to the onboard 
control system of the drone, and the onboard control system will complete the 
corresponding flight according to the set data task (Baca et al., 2021). In addition, the 
ground controller can directly control and operate the UAV from the ground control 
station according to the actual needs, which is similar to various air flight operations on 
the ground (Qin et al., 2019). 

UAV technology has been continuously improved and perfected in recent years, and 
the advantages that can be obtained in war have become more and more obvious. It has 
developed into an important military research and development project in many 
countries. With the global research boom in the field of UAVs, information warfare is 
becoming more and more fiercer, and the complexity of the confrontation environment is 
further enhanced. The future research of UAVs will mainly focus on formulating UAV 
mission plans, mastering UAV autonomous flight technology and the trajectory planning 
of the UAV is carried out in directions such as (Choi et al., 2021). As an important part of 
the development of aviation technology, air force combat capability and modern national 
defence construction, my country is currently conducting in-depth research on the 
integrated autonomous control and reconnaissance UAV combat platform system based 
on ground control station commands, and then based on this platform to achieve rapid 
combat and target of accurate combat. The UAV’s mission planning, autonomous flight 
technology, flight control technology, and planning routes play a decisive role in whether 
it can fully exert its combat capability (Krátký et al., 2021). 

Zhou et al. (2020) analyses the problem of jamming planning for shore-based 
warning radars when two UAVs are covering the penetrating aircraft group, which 
includes the routes under the lateral jamming and forward and backward jamming 
conditions respectively formulated before the jamming UAV performs the task. The 
planning method realises the purpose of covering the penetration fighter from a certain 
angle and generating an effective interference sector in this direction, and finally obtains 
the interference flight path in various environments. Şmuleac et al. (2019) proposed and 
established a UAV interference early warning radar model. When solving the optimal 
path of a single UAV, the calculation was performed according to the angular velocity of 
the penetration aircraft and the UAV relative to the early warning radar and other 
constraints. The obtained simulation the data shows that this method realises cover 
through the speed of the drone, which greatly saves the resources of the drone. Ulku et al. 
(2019) quantitatively studies the false targets in the pitch and azimuth planes based on the 
cover channel to deceive and interfere with the coordinated operation of the UAV swarm 
airspace, and discuss the corresponding air deployment method, which provides an 
example for the actual operation of the UAV swarm to cover the penetration of air power. 
important basis. Petráček et al. (2021) established a mathematical model for optimising 
the radar track of multi-machine jamming networking. The simulation results show that 
the success probability of jamming of the false target track planned by this model can be 
improved, and the interference can be minimised at the same time thrust during flight. 
Basiri et al. (2022) established a distributed optimisation UAV jamming trajectory 
mathematical model. The difficulty of collaborative jamming is reduced under this 
planning model, so that false targets can avoid the threat area and directly reach the target 
area. 

The rapid development of information technology and the wide application of UAVs 
have made modern flight tasks gradually develop in the direction of more difficult 
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execution and faster flight speed, which puts forward higher requirements and challenges 
for trajectory planning. The current trajectory planning has problems such as huge 
planning space, complex and dynamic task environment, and a variety of strong coupling 
constraints. In terms of the overall research level at home and abroad, it is difficult to 
establish a model for the trajectory planning problem. In theory, there is no algorithm that 
has strong applicability and can solve all problems. Researchers have conducted 
extensive and in-depth research on planning algorithms, and are currently working to find 
an algorithm that plans better and takes less time. In mountainous areas with high 
mountains and steep slopes and surrounded by clouds and fog, high-resolution remote 
sensing satellites are greatly affected when acquiring images. In terms of acquiring 
agricultural production and application information and communications, technical 
research is far from mature, and there is no Human-machine has many inherent 
advantages in plant protection applications. Compared with traditional mechanical plant 
protection equipment, UAVs can operate in a larger area in a single day, have strong 
adaptability, and are easy to promote (Selecký et al., 2019). 

At present, there are various UAV trajectory planning algorithms, among which there 
are many two-dimensional or 2.5-dimensional trajectory planning methods, and the 
methods are also relatively mature. Due to the closer proximity of three-dimensional 
space to the practical application environment of UAVs, many scholars and experts have 
gradually shifted their focus to three-dimensional trajectory planning and proposed many 
improved algorithms. For the three-dimensional global static trajectory planning problem, 
it is currently possible to quickly generate trajectories under simple threats, but there is a 
lack of consideration for the optimal trajectory under complex environmental constraints, 
and it is not possible to simultaneously consider both complex environmental constraints 
and drone performance constraints and characteristics for optimal trajectory planning. For 
the three-dimensional dynamic trajectory planning problem, there is currently less 
research, and the sudden threats considered are all single and simple circular threats. 
Simplifying the three-dimensional environment to the minimum threat surface is 
essentially a two-dimensional environment, and the accuracy of the planned trajectory is 
not enough. In the context of the booming development of spatial information technology 
and the increasingly widespread application of drones, this poses greater challenges and 
requirements for the three-dimensional trajectory planning of drones, and these issues 
need to be resolved as soon as possible. 

The innovation of this paper lies in the analysis and optimisation of UAV 3D LiDAR 
scene scheduling based on bacteria foraging algorithm. According to the specific scene 
situation on the UAV route, the scheduling model is set with a variety of constraints in 
line with real life and in-depth analysis. Then the mathematical model is combined with 
the NBFA algorithm in this paper, and the evaluation standard of scheduling scheme is 
established. The optimal solutions of each algorithm are obtained through simulation 
experiments, and then the advantages of NBFA algorithm in dealing with scheduling 
problems are obtained by comparing the optimal solutions of each algorithm. 

The goal of this article is to study the design and implementation of enhanced 
synthetic visual schemes for UAVs in different stages of three-dimensional perception, 
understanding, and decision-making in complex environments. Design and validate an 
enhanced synthetic visual scheme for situational awareness in complex environments 
using visual simulation technology. 

The organisational structure of this article is as follows: describe the background and 
significance through the introduction, introduce the research content of this article, 
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improve the algorithm, make the local search of the algorithm more accurate, and ensure 
that the algorithm results are close to the global optimal value; perform mathematical 
modelling for multi-drone scene planning based on 3D LiDAR create a 3D point cloud 
map and set the target points we want to go to in the 3D point cloud map; verify the 
effectiveness of the algorithm model through experiments, and provide research 
conclusions and prospects for this article. 

This paper studies the mathematical modelling of multi-UAV scene planning, and 
uses 3D LiDAR as the basis to verify the model effect through intelligent simulation, 
which provides a reference for subsequent UAV scene planning. 

2 Multi-UAV group planning algorithm 

Improve the informatisation degree and work efficiency of UAV, and ensure the normal 
operation of UAV group. The early construction and later operation and maintenance of 
the UAV dispatching system can not be separated from the technical support of software 
and hardware. The UAV working online, the information flow during the operation 
period, and the line equipment conditions can be accurately collected, transmitted, and 
comprehensively processed. 

Communication system is a very important and complex system in urban UAV scene 
planning. It can establish a real-time audio-visual information link network to ensure 
accurate transmission of all kinds of information. The communication system is 
composed of closed-circuit television system, dispatching telephone system, wireless 
dispatching system, clock system, broadcasting system, communication power supply 
system, etc. 

In contemporary society, there are a large number of production problems that need 
mathematical functions to solve. However, with the increase of the complexity and the 
expansion of the number of problems, those traditional mathematical methods are no 
longer suitable. Therefore, a large number of researchers have created ant colony 
algorithm, neural network, Tabu search and other intelligent algorithms based on the 
biological behaviour of nature. These intelligent algorithms have many advantages over 
traditional mathematical methods in solving complex abstract problems. However, due to 
the setting of coefficients, these algorithms are prone to fall into local optimal results and 
cannot achieve the optimal results that people expect. 

The main work of this paper is to study the theory and application on the basis of the 
basic bacterial foraging algorithm, improve the algorithm according to the defects of the 
algorithm, and combine the actual needs of three-dimensional LiDAR detection, so a 
Gauss Cauchy adaptive bacterial foraging algorithm based on log-linear model is 
proposed. Based on the actual UAV scene planning work plan, the mathematical model 
of scheduling optimisation that conforms to the actual operation of UAV scene planning 
is rebuilt, and then the improved algorithm is combined with the rebuilt mathematical 
model of scheduling optimisation to improve the effect of UAV scene planning. 

2.1 Basic operation of bacterial foraging algorithm 

The UAV scheduling problem can be described as follows: given the location of the 
scheduling centre and the location of each task point to be executed, the UAV needs to be 
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arranged to execute tasks from the scheduling centre to each task point. In the scheduling 
scheme, each task point can only be executed by one UAV, and each UAV can execute 
multiple task points, but the flight distance of each UAV cannot exceed its maximum 
flight distance limit. In addition, priority and time window constraints of each task point, 
mountain terrain, no fly zone and other threat factors need to be considered during flight. 
The ultimate optimisation goal is to maximise the total benefits of the scheduling scheme, 
the cost is minimal. 

When solving the multi-objective optimisation problem of the UAV group, the 
calculation process of the bacterial foraging algorithm (BFA) algorithm imitates the three 
basic operations of Escherichia coli. That is, an algorithm operation cycle includes a 
chemotaxis operation, a reproduction operation, a elimination and dispersal operation, 
and finally the algorithm operation ends and outputs the result. The BFA algorithm first 
regards each bacterial individual as the optimal solution of the problem (the location 
information of the bacteria represents the candidate optimal solution of the algorithm), 
and initialises each bacterial individual. After that, it finds the optimal solution of the 
multi-objective problem in the global scope through iterative calculation. 

The introduction of letter symbols is to better represent all kinds of information of the 
algorithm: j, k, l represent the number of chemotaxis operation, reproduction operation, 
elimination and dispersal operation that have occurred in the bacterial foraging algorithm, 
respectively; D represents the searchable dimension of bacteria in the entire living space, 
and S represents the population number of bacteria in the entire environment; Nc 
represents the maximum number of iterations of the bacteria chemotaxis operation; Ns 
represents the maximum number of steps the bacteria can move in a random direction; 
Nre represents the maximum number of iterations the bacteria allow replication to occu; 
Ned represents the maximum number of iterations that bacteria can perform elimination 
and dispersal operations, Ped represents the probability of bacteria dispersal in any 
direction in all random directions; C(i) represents the adaptive search step size of 
bacteria. 

P(j, k, l) = {θi(j, k, l)|i = 1, 2, …, s} represents the position of the individual in the 
population after the jth chemotaxis operation, the kth reproduction operation and the first 
elimination and dispersal operation. J(i, j, k, l) represents the fitness function value of 
bacteria i after the jth chemotaxis operation, the kth reproduction operation and the first 
elimination and dispersal operation. 

A bacterium picks a random direction at a certain location and moves forward. If the 
fitness value of the region is lower than that of the previous region, the bacteria will rely 
on the rotation of the flagella to randomly select a forward direction again. If the fitness 
value of bacteria in any area is higher than the fitness value of the previous area, the 
bacteria will not change direction and continue to dispersal until it encounters a poor food 
environment, after which it will change its direction again. 

( 1, , ) ( , , ) ( ) ( )i iθ j k l θ j k l C i φ i+ = +  (1) 

( )( )
( ) ( )

iφ i
i iΓ

Δ=
Δ Δ

 (2) 

A bacterial population is S, the location of a bacterium represents a candidate solution to 
the problem, and the information of bacterium i is represented by a D-dimensional vector 

1 2[ , , , ], 1, 2, , ,i i i i
Dθ θ θ θ i S= =   where θi(j+ 1, k, l) in formula (1) represents each step 
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of the chemotaxis operation of bacterium i. C(i) represents the step length of forward 
search for seedling i when it is fed, that is, the adaptive step length of bacteria. In  
formula (2), φ(i) is the angle formed by the bacteria i after changing its direction and the 
original advancing direction, and Δ(i) is the unit vector after randomly changing the 
advancing direction. 

The chemotaxis operation process is shown in Figure 1. 

Figure 1 Flowchart of chemotaxis operation (see online version for colours) 

 

The core operation of BFO algorithm is chemotaxis operation, which has excellent local 
optimisation ability and affects the search ability and depth of individual bacteria, so it is 
a key part of BFO algorithm optimisation. 

Organisms follow the natural law of survival of the fittest. When the biological 
environment is superior, the biological reproduction capacity is enhanced, and the 
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population increases; when the living environment is destroyed, the biological population 
decreases. Faced with the above situation, the less viable E. coli colonies will be 
eliminated by the environment, while the more foraging individuals in the bacterial 
population will survive and replicate themselves. In this way, the number of bacterial 
populations can be kept unchanged, which can ensure the global optimisation of the 
algorithm. The process of reproduction operation is shown in Figure 2. 

Figure 2 Flowchart of reproduction operation (see online version for colours) 

 

i
healthJ  represents the health information of bacterial individual i, which is usually 

expressed by the concentration of food around bacterial individual i. The higher the food 
concentration around the individual bacteria, the healthier the bacteria, and the stronger 
the ability of bacteria to eat at this moment, and vice versa. Through the above ideas, 
firstly, the bacterial populations in the whole environment are sorted according to the size 
of the health degree, and then the median value of the health degree of the bacterial 
population is selected. Next, the bacterial population Sr whose health value is less than 
the intermediate value is eliminated (Sr = S/2, where S represents the total number of 
bacteria before elimination). Finally, the remaining half of the bacteria Sr (the half of the 
seedlings with a health value greater than or equal to the median value) are replicated. 
Moreover, the post-replication bacteria and the pre-replication bacteria with a health 
degree greater than or equal to the median value have the same feeding ability and the 
same health degree. Through the reproduction operation, the bacterial population will not 
change under any conditions, which can ensure that the candidate feasible solutions of the 
algorithm remain unchanged, and can also improve the computational efficiency and 
optimisation accuracy of the algorithm. The following formula (3) represents the health 
degree of any bacterial individual i: 

 
1

( , , , )
Nc

i
health

j

J J i j k l
=

=  (3) 
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Although the above reproduction operation can ensure that the feeding ability of the 
offspring and the parent bacteria is exactly the same, it will replicate the bacteria with 
poor feeding ability in the top 50% of the bacterial health value. As a result, this strategy 
fails to retain the best-fit bacteria for the next generation. Therefore, the distribution 
estimation algorithm can be embedded in the reproduction operation. Estimation of 
distribution algorithm EDA (Estimation of distribution algorithm) is a random search 
algorithm based on the probability distribution of variables. It establishes a corresponding 
probability distribution model by sampling excellent individuals and analysing the 
statistical distribution of space, and generates the next generation of individuals based on 
this probability model, and iterates repeatedly to realise the evolution of the group. The 
specific steps are as follows: 

Step 1 After a complete trend cycle, the algorithm sorts each bacteria according to the 
energy (accumulated sum of fitness values). 

Step 2 The algorithm eliminates half of the bacteria with poor energy, and estimates 
and regenerates the half of the bacteria with better energy. If each dimension of 
the variable to be optimised is independent of each other, and each dimension 
obeys a Gaussian distribution, the bacteria are replicated according to  
formulas (4) and (5). 

,μ σ normX r σ μ= ∗ +  (4) 

( )1 22 ln sin 2normr r πr= − ∗  (5) 

Figure 3 Flowchart of elimination and dispersal operation (see online version for colours) 

 

Among them, r1 and r2 are uniformly distributed random numbers in the interval [0, 1], μ, 
σ are the fractal mean and standard deviation vector of the optimal location of bacteria, 
respectively, and the product is dot product. 
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When the bacteria perform k times of reproduction operation, the probability of 
dispersal behaviour of all bacteria in the large environment is Ped. At this time, all the 
individual seedlings will automatically generate a random number rand(). When the 
random number of the seedlings is less than the probability of dispersal (rand() < Ped), 
the bacteria will automatically die. At the same time, a new individual is randomly 
generated at any position in the area where the bacteria can survive to replace the bacteria 
that died because the random number is less than the probability Ped of dispersal 
occurrence. However, the feeding ability and location information of the new bacteria 
will be different from the original bacteria. The elimination and dispersal operation can 
not only ensure the diversity and reliability of the bacterial population, but also make the 
new bacterial individuals closer to the global optimal solution, which can avoid the 
algorithm from falling into the local optimal solution. The process of elimination and 
dispersal operation is shown in Figure 3. 

2.2 Problem solving process and workflow of bacterial foraging algorithm 

In the BFO algorithm, the algorithm model first encodes bacteria for specific problems, 
and defines the evaluation function (fitness function) of the problem solution to be 
optimised and the energy state of bacteria in the solution space. The solution process for 
specific problems is as follows: initialise the initial generation of solution population 
(bacterial population), calculate the fitness function value of all individuals in the 
population, and then use the bacterial population sensing mechanism to iterate through 
the three main operators of the algorithm: chemotaxis, reproduction and migration, and 
finally generate the optimal solution or quasi optimal solution. The algorithm is 
composed of three nested loops consisting of three operations: chemotaxis, reproduction, 
and migration. The inner layer is chemotaxis, the middle layer is reproduction, and the 
outer layer is migration. 

The specific process of the BFA algorithm to solve the multi-objective optimisation 
problem is as follows: 

1 First, we describe and study the actual problem to be solved in detail, and 
understands the independent and dependent variables of the problem, constraints, 
and the purpose of solving the problem. Then, we determine a mathematical model 
that is reasonable and can solve the multi-objective optimisation problem according 
to the above content. 

2 The established mathematical model formulates the coding scheme according to the 
BFA algorithm, so as to determine the final multi-objective optimisation function. 
Then, the multi-objective optimisation function and the constraints are fused with 
each other and converted into a fitness function. 

3 We conduct an in-depth analysis of the three behaviours of the BFA algorithm, and 
determine the values of the parameters in the algorithm according to the actual 
problem, and then run the BFA algorithm to solve the fitness function value. 

4 If the final number of elimination and dispersal operations of the BFA algorithm is 
greater than or equal to the set number of elimination and dispersal operations, the 
BFA algorithm stops the operation and outputs the final calculation result. 

Figure 4 visually represents the workflow of the bacterial foraging algorithm. 
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Figure 4 Flowchart of the BFA algorithm (see online version for colours) 

 

2.3 Analysing the parameters of a bacterial foraging algorithm 

When we solve multi-objective problems, we should first understand the role of various 
parameters in the BFA algorithm. The reason is that the parameter setting has a direct 
impact on the optimisation accuracy and convergence efficiency of the algorithm. The 
following is a detailed analysis of various parameters of the BFA algorithm. 

When the bacteria live in a suitable environment (high food concentration, mild 
temperature, acid-base balance, etc.), the bacteria will multiply to maintain the 
population. Therefore, the value of the parameter Nre in the reproduction operation will 
affect the feeding ability of bacteria leaving the low food concentration area. When the 
maximum allowable number of chemotaxis operations for bacteria Nc is constant, if the 
value of the number Nre allowed to perform reproduction operations for bacteria is set 
larger, it will prolong the algorithm cycle and increase the workload of the algorithm. On 
the contrary, the same is true. If the value Nre of the maximum reproduction operation 
times of bacteria is set too small, although the operation cycle and complexity of the 
algorithm will be reduced, the algorithm will be too premature and the optimisation result 
will be close to the local limit value. It eventually destroys the optimisation accuracy of 
the bacteria feeding algorithm. 

When the value of the termination condition Ned of the algorithm elimination and 
dispersal operation (the maximum number of iterations allowed by the elimination and 
dispersal operation) is set to a small value, although the operation efficiency of the 
algorithm is increased, the result obtained by the algorithm will not be the global optimal 
value due to insufficient operation degree. However, if the value of parameter Ned is too 
large, the advantage is to increase the diversity of feasible solutions of the algorithm, 
prevent premature maturity, and make it easier for the algorithm to find the optimal 
solution. The disadvantage is that the larger the value of Ned is, the greater the 
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computational complexity of the algorithm and the more time-consuming computation. 
Therefore, to sum up, the reasonable choice of the dispersal probability Ped is the key 
factor to avoid the algorithm falling into the extreme value. If the value of dispersal 
probability Ped in the bacterial foraging algorithm is set too large, it will increase the 
randomness of bacteria in the optimisation process, and ultimately reduce the 
convergence of the algorithm and the ability to find the optimal solution. 

J(i, j, k, l) represents the fitness value of bacteria i in the jth chemotaxis operation, the 
kth reproduction operation and the first elimination and dispersal operation, and the 
influence value of the signal transmitted between the populations is shown in the 
following formula (6): 
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Considering the effects of repulsion and attraction on bacterial behaviour, the new fitness 
value of bacteria i after performing a chemotaxis operation is shown in the following 
formula (7): 

( )( , 1, , ) ( , , , ) ( 1, , ) , ( 1, , )i
ccJ i j k l J i j k l J θ j k l P j k l+ = + + +  (7) 

2.4 Improvement of bacteria feeding algorithm 

Bacteria will die out due to themselves and the environment when they are fed, and the 
disappearing bacteria will affect the number of populations and thus the accuracy of the 
algorithm. Therefore, in order to keep the bacterial population unchanged during the 
operation, a log-linear model is introduced into the bacterial population to ensure that the 
candidate feasible solutions of the algorithm will not change, as shown in formula (8): 
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Among them, the role of function hm(t) (m = 1, 2, …, M) is to improve the functional 
function of bacterial population diversity, as shown in formula (9): 
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 (9) 

h(t) ∈ (0, 1]. h(t) = 1 means that the bacterial population diversity in the algorithm is 
poor, and the algorithm has few candidate feasible solutions. When h(t) < 1, the bacterial 



   

 

   

   
 

   

   

 

   

    Mathematical modelling of multi-UAV scenario planning based on 3D LiDAR 13    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

population diversity in the algorithm is good. Among them, the t
avgJ  function value 

represents the average fitness value of the bacterial population after completing t 
iterations, and J(i, j, k, l) represents the current fitness function value of the bacteria. 

The trend and dispersal operations of the bacteria feeding algorithm are improved, 
and the inertia weight coefficient is added for the log-linear model, as shown in  
formula (10): 

( (1 ( )))0.6 0.3 ( 1, 2, , )rP t
iω e i n− ∗ −= ∗ + = α  (10) 

Among them, ω = [ω1, ω2, …, ωn] represents the inertia weight vector, and ωi(i = 1, 2, 
…, n) represents the inertia weight of the ith dimension. α is set to a constant 10, and the 
product is a dot product. 

To optimise the tendency behaviour in the basic BFA according to the inertia weight, 
the bacteria update their position according to formula (11): 

( )( )1
1

()

t t t
i ii j it

i t t
j i

ω X ω X X
X

X X step rand
+

+ − −
=

− × ×
 (11) 

Among them, the value of rand() takes any number in the closed interval [–1, 1]. 
Bacteria can move according to formula (12) when performing dispersal behaviour: 

( )( ) 1

 

1
  ()

t t t
i ii ibestt

i t t
ibest

ω X ω X X
X

X X step rand
+ + − −

=
− × ×

 (12) 

Among them, Xbest is the optimal state of bacteria. 
The following two formulas (13) and (14) can be used to adaptively adjust the value 

of the step size coefficient in the above problem: 

minC C δ C= ∗ +  (13) 

( )( )maxexp 3δ G G= − ×  (14) 

Among them, G and Gmax respectively represent the number of times the algorithm has 
executed dispersal and the maximum number of times to execute dispersal in the whole 
algorithm cycle. The product of formula (13) adopts dot product. The value of the step 
size C is larger in the initial stage of the algorithm, which can improve the efficiency of 
the algorithm and enable the algorithm to find the optimal value in a relatively short time 
in a large range. With the progress of the algorithm, the value of the step size C gradually 
decreases, which can improve the optimisation accuracy of the algorithm. 

In order to maintain the diversity of the bacterial population after the bacteria perform 
the replication behaviour, the bacteria are mutated as in formula (15): 

(0, 1)i i iX X X N′ = + ∗  (15) 

Among them, N(0, 1) obeys the Gauss distribution with mean 0 and mean square error 1, 
and the product adopts dot product. Bacteria will automatically perform elimination and 
dispersal operation when they sense a high concentration of food, so that their individuals 
swim to the area. After the bacteria absorb the food nutrients in this area, the overall 
living environment of the bacteria changes (the food concentration is reduced, the pH is 
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unbalanced, the salinity is reduced, the water is reduced, etc.), and the bacterial viability 
is reduced, resulting in a decrease in the population. Therefore, in order to ensure the 
diversity of the bacterial population after the algorithm performs the elimination and 
dispersal operation, the Cauchy mutation shown in formula (16) is performed on the 
bacteria: 

(0, 1)i ii XX X C′ = + ∗  (16) 

Among them, C(0, 1) is the standard Cauchy distribution, and the product adopts the dot 
product. 

3 Mathematical modelling of multi-UAV scenario planning based on 3D 
LiDAR 

3.1 Model building 

The traditional mathematical calculation methods, such as maximum likelihood method 
and trilateral measurement method, used in the classical algorithm are all a kind of 
estimation methods. When they are used, the difference between the final node estimated 
coordinates and the real coordinates will be too large, which will affect the final  
three-dimensional laser radar positioning and scanning effect. Considering this problem, 
we start with the intelligent optimisation algorithm, the traditional mathematical method 
is replaced by the bacterial foraging algorithm and Newton iteration method to calculate 
the corresponding subsequent node position coordinates. The specific steps are as 
follows: 

1 Initialise the whole network. The specific steps are the same as those in the classical 
three-dimensional laser radar positioning and scanning algorithm. The beacon node 
of the wireless sensor network will generate information packets and forward them 
to its neighbour nodes within the communication radius. After receiving the packets, 
the node will transmit them to its neighbour nodes in the same way. The initial value 
of the hop value in the data packet is 0. 

2 Calculate the minimum hop value between nodes and the average hop distance of 
beacon nodes. The specific steps are still the same as those in the classical  
three-dimensional laser radar location scanning algorithm. For the minimum hop 
value, unknown nodes will select the beacon node closest to themselves and retain 
the hop value between them. For average hop distance, the real distance between 
beacon nodes is calculated by GPS device, and then the average hop distance of 
beacon nodes can be obtained by dividing the real distance and hop value. 

3 Calculate the estimated distance between beacon node and unknown node. The 
estimated distance between beacon node and unknown node can be obtained by 
multiplying the average hop distance and the minimum hop value in step 2. 

4 The bacterial foraging algorithm is close to the unknown node coordinates, and the 
estimated distance between the beacon node and the unknown node in step 3 is 
substituted into the objective function. When the objective function value is the 
minimum, the coordinates obtained at this time are close to the real coordinates of 
the unknown node. 
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5 Newton iteration method is accurate to the unknown nodes. The estimated coordinate 
data of the unknown nodes are calculated in step 4. However, due to the slow 
convergence speed of the bacteria foraging algorithm, the final results are not very 
accurate, and the accuracy of the solution of Newton iteration method will be 
affected by the initial value. Therefore, the results in step 4 are taken as the initial 
values of Newton iteration method to further refine the results. 

In the second part, with the support of the multi-objective optimisation model based on 
bacteria algorithm, the mathematical modelling of multi-UAV scene planning based on 
3D LiDAR is carried out, the 3D point cloud map is created, and the target point we are 
going to is set in the 3D point cloud map. Therefore, the positioning of the rotor UAV in 
the 3D point cloud map is very important. The positioning should not only mark the 
position of the UAV itself, but also make the error as small as possible. Then, go through 
the generated path to reach the specified destination point. Finally, the obstacles that 
appear during the movement are avoided, and the real-time problem of the rotor UAV is 
taken into account. Figure 5 shows the system function diagram. 

Figure 5 System function diagram (see online version for colours) 

  
The design architecture is mainly distinguished by physical layer, protocol layer and 
application layer. The design architecture of the navigation system as shown in Figure 6 
is given. 

As shown in Figure 6, the UAV navigation architecture system enables real-time 
planning and scene analysis of the navigation process of the drone. It also enables real-
time analysis of complex environments through sensors, analysing various hazardous 
factors and avoiding harmful factors in a timely manner. 

The corresponding system hardware topology connection diagram is shown in  
Figure 7. It is divided into two modules, the UAV side and the ground station side, which 
correspond to each hardware in the physical layer. 
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Figure 6 Design architecture of UAV navigation system (see online version for colours) 

 

Figure 7 Hardware topology of UAV navigation system (see online version for colours) 
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On the basis of the above model, the simulation test is carried out. There are obstacles 
such as power lines, flagpoles, and stands above the sports track, and adverse weather 
conditions were selected for experimental research. Figure 8 is the trajectory diagram of 
the manually controlled rotor UAV flying around the stadium runway. From the outline 
in the figure, it can be seen that the whole conforms to the flight trajectory, achieves the 
expected fusion positioning accuracy, and can meet the requirements of autonomous 
cruise. 

Figure 8 Trajectory diagram (see online version for colours) 

 

3.2 Results 

Next, experimental research will be conducted on the planning and navigation processes 
of UAVs in various complex environments, and some data will be collected for intuitive 
display. The registration time of each frame of LiDAR data and the number of iterations 
of each frame of LiDAR data registration are sampled during the navigation process, as 
shown in Figure 9. The horizontal and vertical axes in the figure have corresponding 
descriptions. The red line is the original data, and the blue line is the smoothed data 
display. 

Figure 9 3D LiDAR navigation experiment, (a) registration time of laser points in navigation  
(b) number of iterations in navigation (see online version for colours) 

  
(a)     (b) 
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Assume that the simulation experimental environment is a square two-dimensional area, 
randomly distribute wireless sensor nodes within it, and randomly select some wireless 
sensor nodes to load three-dimensional laser radar positioning devices as beacon nodes. 
The simulation experiment is carried out 50 times in each round, and the average value is 
taken as the final experimental result. The random deployment results of nodes are shown 
in Figure 10. 

Compare the effectiveness of the drone scene planning model in this article with Choi 
et al. (2020), verify it through simulation platform, and compare it through manual 
evaluation. A total of 20 sets of comparisons were conducted, and the comparison results 
are shown in Table 1. 

Figure 10 The random deployment results of nodes (see online version for colours) 

 

3.3 Analysis and discussion 

When planning the trajectory of a drone, it is necessary to follow various constraints such 
as the drone’s own characteristics, external environmental constraints, and task target 
constraints. If these constraints are not fully considered, the generated trajectory will not 
be able to reference flight. Therefore, it is necessary to consider various constraint 
information before the drone takes off, and plan a complete reference trajectory from the 
starting point to the target point according to the task requirements, that is, global static 
trajectory planning. However, currently, under typical complex environmental 
constraints, existing three-dimensional global static trajectory planning methods for 
UAVs have problems such as poor efficiency and low accuracy, and cannot balance the 
performance constraints of the drone itself. Therefore, this paper intends to conduct 
research on three-dimensional global static trajectory planning methods for UAVs that 
consider complex environmental constraints. 

The drone trajectory planning algorithm supports and recognises digital information 
in the form of grid space. In the real trajectory planning area, there are many factors that 
affect the trajectory planning route, such as high-rise buildings, terrain peaks, various 
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dangerous elements, obstacles, task requirements, etc. These constraint information data 
sources are diverse and styles are different. If these factors are separately considered for 
their impact on trajectory planning, this will result in longer algorithm runtime and affect 
computational efficiency. Therefore, it is necessary to build an environmental model for 
UAV trajectory planning, which can not only effectively transform and integrate all 
factors that affect trajectory planning, but also directly provide grid digital information 
that the algorithm can recognise and process, facilitating algorithm search and 
calculation, thereby improving computational efficiency. 
Table 1 Comparative experimental results 

Number The method of this article The method of Choi et al. (2020) 
1 92.456 87.231 
2 88.953 85.033 
3 87.344 80.085 
4 87.785 81.791 
5 86.929 84.817 
6 86.019 83.324 
7 89.876 86.152 
8 87.712 79.169 
9 87.522 80.044 
10 85.336 78.627 
11 86.777 79.381 
12 89.257 87.613 
13 92.584 87.409 
14 87.692 81.402 
15 85.826 80.978 
16 86.234 79.477 
17 89.759 83.923 
18 88.628 84.158 
19 90.053 82.682 
20 85.479 79.770 

Due to the continuous movement of the radar coordinate system with the drone platform, 
obtaining complete information of the original three-dimensional scene in the world 
coordinate system requires unifying all the collected LiDAR data to the same coordinate 
system for fusion. Generally speaking, due to the high-frequency characteristics of radar 
sampling, the information collection of outdoor large-scale scenes usually includes 
thousands of frames of point cloud data, and there is a lack of overlapping scenes 
required for registration between distant point cloud data. Therefore, how to convert all 
point clouds to the same coordinate system based on registration information between 
adjacent frames is also an important issue that cannot be ignored in large-scale scene 
reconstruction. 

After completing the fusion of point cloud frames, the originally sparse and uneven 
point clouds form point cloud blocks with relatively uniform resolution based on the first 
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frame of each group as the coordinate system. These point cloud blocks have similar 
amounts of data and a large number of overlapping areas, which can obtain more accurate 
results in registration calculations. After obtaining the coordinate transformation of point 
cloud blocks, if all spatial information is retained for the overlapping parts between point 
cloud blocks, it will cause a certain degree of data redundancy. Therefore, the 
simplification and smoothing of point cloud data in overlapping areas cannot be ignored. 

This article studies the mathematical modelling of multi-drone scene planning, using 
3D LiDAR technology as the basic navigation technology and bacterial foraging 
algorithm as the multi-objective optimisation algorithm. In order to address the 
shortcomings of the algorithm, appropriate improvements are made, and the bacterial 
population in the algorithm is introduced into the log-line model to improve the trend and 
migration of the algorithm, making the local search of the algorithm more accurate; 
Introducing Gaussian Cauchy mutation to ensure the diversity of bacterial population and 
ensure that the algorithm results are close to the global optimum. Combining the 
experimental research is to verify the model’s effectiveness. 

In Figure 9(a), when the UAV flies to an area with inconspicuous features, the longest 
registration time for fusion positioning is 731 ms. The smoothed curve is shown in the 
blue curve in the figure. Most of the registration time is 120 milliseconds on average, 
which meets the needs of real-time scene perception and poses estimation during cruise. 

In Figure 9(b), the number of iterations exceeds the maximum number of iterations 
during the initial registration, and the registration is completed within the number of 
iterations in the rest of the time, and the average number of iterations is small. At the 
beginning of the registration, the initial pose is manually added on the ground station 
software, so it can quickly converge within the number of iterations. 

As shown in Table 1, the evaluation results of drone scene planning in this paper are 
distributed in [88, 93], and the evaluation results of drone scene planning using the 
method proposed in Choi et al. (2020) are distributed in [78, 88], which verifies the 
feasibility of the proposed method. 

From the above experimental research (Figure 10), it can be seen that the multi-UAV 
scene planning method based on 3D LiDAR can effectively improve the optimal control 
effect of multi-UAVs and improve the working efficiency of UAV swarms. 

4 Conclusions 

LiDAR is a new type of measurement technology that has developed rapidly in the past 
decade. It emits a single-band laser beam and obtains the three-dimensional coordinate 
information of surface objects according to the echo of the ground objects, thereby 
generating point clouds to realise the extraction of ground object information and the 
reconstruction of three-dimensional scenes. Due to its high angular resolution and strong 
anti-interference ability, it has been widely used in research fields such as remote sensing 
data detection, ground model restoration and reconstruction, and has great application 
prospects. This paper studies the mathematical modelling of multi-UAV scene planning, 
and uses 3D LiDAR as the basis to verify the model effect through intelligent simulation. 
The experimental study shows that the multi-UAV scene planning method based on 3D 
LiDAR can effectively improve the optimal control effect of multi-UAV. 

The research in this article is based on computer simulation systems, and attempts can 
be made to implement the enhanced synthetic visual scheme designed in this article on 
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embedded platforms, striving to move towards real application scenarios. The feasibility 
of the proposed model can be further verified in practice. 
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