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Abstract: In this paper, we propose a methodology to effectively manage 
portfolio risk and allocate capital. By taking a scientific, proactive approach, 
and understanding the risk associated with each asset before creating a 
portfolio, it is possible to minimise overall portfolio risk by distributing capital 
in a diverse and systematic manner. To achieve this, we suggest combining 
value-at-risk (VaR) with other statistical measures like the percentile rank and 
the empirical rule. Through this research, we found that this combination can 
significantly reduce potential portfolio losses when compared with an  
equally weighted portfolio. The results are based on an analysis of 30,200  
daily historical prices between January 2011 and December 2022, using  
three different methods: historical (non-parametric), variance-covariance 
(parametric), and Monte Carlo. These findings underscore the importance of 
proactively managing risks along with allocating capital and highlight the 
benefits of using a data-driven, systematic approach to portfolio management. 
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1 Introduction 

Risk management is a critical part of asset and capital allocation. With constantly 
changing market conditions, investors and financial institutions need to assess the 
potential risks of a portfolio before allocating capital to each asset. This allows for more 
informed investment decisions, as well as optimal risk diversification and management 
(Hing and Chow, 2022; Zhang et al., 2020). Value-at-risk (VaR) is a widely used 
statistical measure of the potential loss that a portfolio of financial assets, such as stocks, 
bonds, or derivatives, may suffer over a specific period, and at a given level of 
confidence. In other words, VaR provides an estimate of the maximum amount that a 
portfolio is likely to lose within a certain period, with a given level of probability. By 
estimating the maximum potential loss, VaR helps assess the risk of a portfolio and 
develop strategies to manage and control that risk. It can be calculated for individual 
assets, a portfolio of assets, or for an entire financial institution. 

One of the main issues that arises from using VaR in portfolio risk management is 
that it is often applied only after the construction of a portfolio. In cases of financial 
stress or unexpected market conditions, a portfolio might face significant losses if assets 
with higher risk have been over-invested, or if capital is allocated equally without taking 
a more systematic approach. Therefore, it is important to use a more systematic and 
rigorous methodology to allocate capital, based on VaR calculations and other risk 
metrics, to achieve a balance between risk and return. Doing so can also help avoid 
overexposure to any single asset. This paper demonstrates an approach that can 
significantly reduce potential losses in a portfolio and ensure efficient capital allocation. 

While there is a wealth of information available on how to calculate VaR with various 
methodologies for a given portfolio, there is currently no specific literature addressing 
how to structure a portfolio in advance and allocate capital based on the calculated VaR 
and its practical applications. Therefore, the goal of this research is to provide a practical 
framework for using VaR as a proactive tool for effective portfolio management, risk 
reduction, and capital allocation. It will serve as a roadmap for financial professionals, 
offering tangible insights into the proactive utilisation of VaR. It not only facilitates 
effective portfolio construction but also provides practical strategies for minimising risks 
and optimising capital allocation. The study’s significance is extended by its emphasis on 
real-world applicability, ensuring the insights gained from the research can be readily 
implemented in dynamic financial landscapes. 

Real-world instances serve as compelling illustrations to underscore the pragmatic 
utilisation of sophisticated risk management tools such as VaR and risk-adjusted capital 
allocation. A notable scenario involves the meticulous preparation for a market downturn, 
wherein a seasoned portfolio manager employs VaR proactively. This involves a 
comprehensive analysis of historical data and the calculation of VaR at various 
confidence levels. As an impending downturn is identified, the manager strategically 
adjusts the portfolio by reallocating assets to more stable investments. This strategic 
manoeuvre is designed to mitigate potential losses during adverse market conditions. 

In another scenario, the application of risk-adjusted capital allocation by an 
investment firm adds a layer of complexity to the risk management landscape. The firm, 
cognisant of calculated VaR values across diverse asset classes, adopts a meticulous  
risk-adjusted approach to capital allocation. This involves allocating more capital to 
assets exhibiting higher expected returns and lower VaR. The objective is to optimise the 
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risk-return profile of the overall portfolio, emphasising scientific precision and strategic 
foresight, which are inherent in the implementation of these risk management strategies. 

Our approach aims to build upon the existing literature, using three VaR 
methodologies, namely the historical method, the variance-covariance method, and the 
Monte Carlo method. We will show how VaR can be combined with the percentile rank 
method and the empirical rule to rank assets based on specific quantiles and allocate 
capital accordingly. This approach is intended to help achieve a balance between risk and 
return while avoiding over-investment in assets with high volatility. Additionally, we 
compare the results of each VaR method to those of an equally distributed portfolio, in 
combination with the percentile rank and the empirical rule. This comparison will show 
how the combination of methodologies can effectively minimise overall portfolio risk 
and losses. 

In this research, we analysed a portfolio of assets including the top nine stocks from 
the S&P500, plus the S&P500 Index itself, ranked by their weighted average. In finance 
and investing, the S&P500 Index is often used as a benchmark for the overall 
performance of the US stock market. It is a market-capitalisation-weighted index of the 
500 largest publicly traded companies in the USA, and therefore, is considered a good 
representation of the overall health of the US stock market. The specific assets were 
chosen based on their weighted average from the official website of the S&P500. We 
obtained data from 3 January 2011 to 30 December 2022 from Yahoo Finance, resulting 
in a total of 30,200 daily historical prices. The sample size for all three methods 
combined was 90,600 closing prices across the ten assets. Additionally, the Monte Carlo 
method involved an extra 100,000 simulations, bringing the grand total to 190,600 data 
points. All the data were analysed using quantitative analysis techniques in the Python 
programming language. 

2 Literature review 

The concept of VaR and its practical application in risk management are discussed in 
Linsmeier and Pearson (2000), where various methods for calculating VaR are reviewed, 
and the advantages and disadvantages of each method are outlined. These methods 
include the historical method, the variance-covariance method, and the Monte Carlo 
simulation. In David et al. (2022), a new approach to capital allocation that incorporates 
tail risk into the process is proposed, highlighting the need for a more nuanced approach 
to capital allocation. While Taylor’s (2008) method for estimating VaR and expected 
shortfall (ES) using expectiles is more accurate and robust during extreme events, 
compared to traditional VaR methods that rely on a fixed percentile. Additionally, in 
2017, Tripathy employed the GARCH method, a statistical modelling technique used to 
forecast the volatility of financial asset returns. These studies highlight the need for a 
more nuanced approach to risk management, incorporating tail risk and more accurate 
methods for estimating VaR and ES. 

In their recent study, Peng et al. (2023) present a new VaR predictor called G-VaR, 
employing a unique methodology. The authors conducted comprehensive experiments 
using the NASDAQ Composite Index and S&P500 Index, revealing the superior 
performance of the G-VaR predictor compared to many established VaR predictors in 
terms of accuracy and reliability. 
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In Francq and Zakoïan (2020), the virtual historical simulation (VHS) method was 
introduced, which combined historical simulation with a statistical model that captured 
extreme events, to estimate VaR for large portfolios. Gupta and Liang (2005) examined 
VaR as a measure of potential loss for hedge funds, highlighting the importance of using 
risk management tools such as VaR to assess the capital adequacy of financial institutions 
and mitigate potential risks. Patton et al. (2019) proposed a dynamic semi-parametric 
model for ES and VaR, combining a parametric model for the conditional mean and a 
nonparametric model for the conditional distribution of portfolio returns. Kuester et al. 
(2006) explored the accuracy of VaR predictions, suggesting that the filtered historical 
simulation and GARCH methods may provide more accurate predictions than the 
traditional historical simulation method. Christoffersen et al. (2001) tested the 
performance of five VaR models commonly used in financial institutions, using data 
from three indices, with the filtered historical simulation model being found to 
consistently outperform other models. Bernard et al. (2017) provide insights into the 
effectiveness and limitations of VaR as a risk measurement tool for credit risk portfolios, 
offering valuable information for financial institutions and risk managers in their 
decision-making processes. 

Danielsson et al. (2008) proposed a method for portfolio allocation that considered 
the VaR constraint and incentives for financial innovation. The authors use a probabilistic 
approach to estimate VaR, which allows for more accurate and flexible risk management. 
They also investigated the impact of incentives for financial innovation on optimal 
portfolio allocation. The study showed that the VaR constraint can significantly affect 
optimal portfolio allocation and that incentives for financial innovation can improve the 
allocation of risk across assets. While Kong et al. (2021) proposed a joint quantile 
regression framework for VaR and ES forecasting that outperforms traditional methods, 
and provides better risk-adjusted returns and lower tail risk for portfolio allocation. 

Francq and Zakoïan (2018) focus on the estimation risk associated with the VaR 
measure for portfolios, driven by semi-parametric multivariate models. These models 
combine both parametric and non-parametric components to capture the complex 
dependencies and characteristics of financial data. 

Jung et al. (2022) propose a dynamic process for portfolio risk measurement, to 
address potential information loss. The proposed model takes advantage of financial big 
data to incorporate out-of-target-portfolio information that may be missed by VaR, which 
only measures certain assets in a portfolio. The authors investigate how the curse of 
dimensionality can be overcome in the use of financial big data and discuss when and 
where benefits occur from a large number of assets. 

In their study, Mi and Xu (2023) delve into two optimal portfolio selection problems, 
with a focus on rank-dependent utility investors aiming to manage their risk exposure. 
They examine scenarios that include a single VaR constraint and joint VaR and portfolio 
insurance constraints. Their findings reveal that, in adverse market conditions, optimal 
investment outcomes result in reduced risk when compared to existing models, regardless 
of the presence of constraints. 

Finally, several studies have emphasised the relationship between VaR and capital 
structure, attributing it to the evaluation of risk and the administration of a company’s 
financial resources (Aboagye and Appiah, 2019; Chegini and Bashiri, 2017; Rizk and 
Sassine, 2023; Chasiotis et al., 2022). Further research has focused on additional factors 
that impact the accuracy of financial data utilised in VaR calculations. These factors 
encompass earnings management, the cost of debt, the quality of corporate disclosures 
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and audit reports, as well as considerations related to green entrepreneurial issues 
(Ahmad et al., 2022; Jouini, 2018; Mishra et al. 2023). 

3 Sample and methodology 

In the methodology section, three methods have been identified to estimate VaR: the 
historical (non-parametric) method, the variance-covariance (parametric) method, and the 
Monte Carlo method. Each of these methods has its own strengths and weaknesses, and 
choosing the appropriate method will depend on the characteristics of the portfolio being 
evaluated and the risk management objectives of the investor. Historical VaR is a  
non-parametric approach that uses the past performance of a portfolio to estimate the 
potential losses that may be incurred in the future. The variance-covariance method, on 
the other hand, is a parametric approach that assumes a normal distribution of returns and 
estimates VaR based on the mean and standard deviation of returns. The Monte Carlo 
simulation method, which is a more flexible and sophisticated approach, uses random 
simulations to estimate VaR, by generating many scenarios based on the historical 
distribution of returns. 

Figure 1 Annualised VaR 90% by asset and method (see online version for colours) 

 

Notes: Scatter chart depicting the different VaR methodologies used and the 
corresponding VAR values at a 90% confidence level. 

Figure 1 depicts the different VaR methodologies used and the corresponding VAR 
values at a 90% confidence level. From this chart, we can see that the results do not have 
significant variance between them, except for the Monte Carlo method, which 
consistently yields higher VAR values than the other two methods. 

The selection criteria for these specific assets were based on their high-weighted 
averages within the S&P500 Index. Weighted averages account for the market 
capitalisation of each asset, emphasising the significance of each stock’s market value in 
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determining its impact on the overall portfolio. The decision to include these nine 
individual assets, plus the S&P500 Index itself, for a total of ten assets in the portfolio, is 
driven by their substantial market capitalisation compared to other stocks from the 
S&P500. By focusing on these top-performing and highly capitalised stocks, the portfolio 
aims to capture the most influential components within the broader S&P500 Index. 

Additionally, the decision to focus on the weighted averages within the S&P500 
Index was taken to help construct a portfolio that accurately reflects the market’s major 
players and their respective weights within the index. 

For quantitative analysis, this study used the Python programming language, and 
Yahoo Finance as the primary data source. Python is a popular language for data analysis 
and offers built-in libraries for manipulating and analysing financial data. Yahoo Finance 
provided a vast collection of historical stock price data and financial information, which 
facilitated the study’s acquisition of reliable and accurate data. The study utilised Python 
to extract, transform, and load data from Yahoo Finance, to create a structured format, 
which was subsequently analysed using various statistical and machine learning 
techniques. 

We downloaded several libraries to analyse the data, including pandas, scipy.stats, 
norm, random, numpy, and datetime. Additionally, we used the matplotlib.pyplot, 
seaborn, and tabulate libraries to visualise our data. Then, we used the yfinance library to 
download the daily closing prices for the relevant assets between 3 January 2011 and  
30 December 2022 in Python. Finally, we visually inspected the daily closing prices for 
each asset and verified the total sample size by checking summary statistics using Python, 
to confirm the accuracy and completeness of the results in the DataFrame. This step was 
crucial to ensuring that the data used for analysis was accurate and complete. Upon 
completing the above preparation, we had all the necessary data to begin calculating the 
different VaR methodologies. 

The portfolio consisted of ten assets, including the S&P500 Index, as well as Apple, 
Microsoft, Amazon, Alphabet, Berkshire Hathaway, NVIDIA, Tesla, ExxonMobil and 
UnitedHealth Group. For the historical and variance-covariance methods, the sample size 
used was 30,200 daily closing prices, with 3,020 closing prices per asset. For the  
Monte Carlo method, the sample size was also 30,200 daily closing prices, with 3,020 
closing prices per asset, but an additional 10,000 dimensions were generated for each 
asset, resulting in a total of 100,000 simulations. Overall, the total initial size for all three 
methods was 90,600 closing prices for the ten assets between 3 January 2011 and 30 
December 2022, plus the Monte Carlo method’s additional 100,000 simulations, resulting 
in a total of 190,600. 

3.1 Historical (non-parametric) VaR methodology 

The first method we used to estimate VaR was the historical method, which is a 
straightforward approach that relies on analysing past market data to identify potential 
future risks. The historical method accounts for the actual price movements and returns of 
assets over a specified historical time frame. It does not rely on complex statistical 
assumptions or mathematical models, making it accessible and transparent. 
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3.2 Variance-covariance (parametric) VaR methodology 

Moving on to the second method used to estimate VaR, the variance-covariance method, 
which involves calculating the standard deviation (σ), the average return (μ), and the  
z-score for each asset’s daily return. This approach assumes that the daily returns of each 
asset in the portfolio follow a normal distribution and that the correlation between the 
assets can be measured by the covariance matrix. 

3.3 Monte Carlo VaR methodology 

Moving on to the third and final method used to estimate VaR, the Monte Carlo 
simulation method, which involves generating random variables based on the statistical 
characteristics of the assets in the portfolio. In this method, we used the μ and σ values 
for each asset in the portfolio to generate many random returns for each asset. By 
simulating these returns and combining them, we created a distribution of portfolio 
returns. From this distribution, we estimated the VaR at a given confidence level. The 
Monte Carlo simulation is a widely used method for estimating VaR and can be applied 
to various types of portfolios and asset classes. 

3.4 Using the empirical rule to allocate capital 

The empirical rule is used for capital allocation across different assets, based on their risk 
characteristics. Known as the 68-95-99.7 rule, or three-sigma rule, it outlines the 
distribution of data in a normal curve. Approximately 68% of data falls within one 
standard deviation from the mean, 95% within two standard deviations, and 99.7% within 
three standard deviations. Widely employed in statistics, this rule serves as a quick guide 
to assessing data spread in a normal distribution. In this study, assets were systematically 
classified into three groups – A, B, and C – based on their risk profiles. The 68-95-99.7 
rule acts as the guiding principle for this categorisation. In the intricate ranking process, 
assets are meticulously ordered from least favourable to most favourable, to gauge their 
risk-return dynamics. This categorisation defines assets into clear segments. Category A 
includes those with returns within the top 16%, indicating lower risk or higher 
performance. In contrast, category C includes assets with returns in the bottom 16%, 
signifying higher risk or comparatively lower performance. Assets within the middle 68% 
fall into category B, representing a moderate level of risk. 

The visual representation in Figure 2 further clarifies the interplay of percentiles 
which are instrumental in ranking assets. What sets this methodology apart is its dynamic 
approach to capital distribution, allocating varying percentages of capital to assets based 
on their assigned risk categories. This nuanced strategy enables a more tailored and  
risk-aware investment approach, optimising the balance between potential returns and 
acceptable levels of risk in the investment portfolio. Thus, it was chosen over other 
methods for its simplicity, broad applicability, and precision in quantifying risk within a 
normal distribution. Its intuitive categorisation and adaptability make it a preferred choice 
for optimising the balance between returns and risk in an investment strategy. 
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Figure 2 Empirical rule and capital allocation 

 

Notes: The paradigm of the empirical rule (68-95-99.7) within a Gaussian distribution 
and the methodology employed for capital allocation is grounded in this paradigm. 
The illustration also delineates the amalgamation of percentiles used for asset 
ranking. Following this guideline, capital is allocated across diverse assets, 
employing varying proportions. 

3.5 Pearson correlation 

In addition, we employed the Pearson correlation method to examine the correlation 
between each asset. This approach was also used in the study of the daily returns data, 
which included all the data points. Notably, four assets, namely BRKB-B, MSFT, AAPL, 
and GOOGL, exhibit a strong positive correlation with ^GSPC. BRKB-B and MSFT 
demonstrate the highest correlation, with a coefficient of 0.8, followed by AAPL and 
GOOGL with a coefficient of 0.7. 

4 Results 

4.1 Historical (non-parametric) method 

Firstly, we calculated the daily percentage change for each asset based on the previously 
created DataFrame. This allowed us to determine the daily returns for each asset. Then, 
we aggregated these values into a new table that contained only the daily returns. To do 
this, we created a new variable called ‘daily returns’. Finally, we dropped any rows with 
missing data and rounded the remaining values to two decimal places. This ensured that 
our data was clean and consistent, making it easier to analyse and draw meaningful 
conclusions. After calculating the daily returns for each asset, we sorted them from the 
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highest negative return to the highest positive return. This showed us the range of returns 
for each asset and allowed us to identify the worst-case scenario in terms of daily losses. 
Using the quantile method, we then found the 0.10 quantile, which represented the daily 
VaR with 90% confidence. With this information in hand, we created a new DataFrame 
of daily VaR at 10% for each asset. To calculate the daily VaR for the portfolio, we first 
needed to determine the 0.1 quantile for each asset in the portfolio. After all the quantiles 
had been calculated and stored in a quantiles dictionary, we created a new DataFrame. 
Finally, we printed the new DataFrame, to see the daily VaR at the 90% confidence level 
for each asset in the portfolio, based on historical data. Once we had the daily VaR 
results, we moved on to annualising the VaR for each asset. Next, we used the empirical 
rule 68-95-99.7 to classify each asset into one of three categories: A, B, or C. We did this 
by finding each asset’s 0.84 quantile. Assets with returns above the 0.84 quantile were 
classified as A-rank investments (top 16%). Those between the 0.16 and 0.84 quantiles 
were classified as B-rank assets (middle 68%). Those below the 0.16 quantile were 
classified as C-rank assets (bottom 16%). Finally, we allocated capital to each of the 
ranked investments. We distributed the portfolio value (set at $100,000) equally to each 
ranked investment, based on their respective allocations. 70% of the portfolio value was 
allocated to A-rank investments, 25% to B-rank assets, and only 5% to C-rank assets. 

Figure 3 Correlation coefficients between daily returns and assets (see online version for colours) 

 

Note: Pearson correlation coefficients between the daily returns of various assets. 
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Table 1 Annualised VaR historical method results 
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Table 2 Annualised VaR variance-covariance method results 
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Table 3 Annualised VaR Monte Carlo method results 
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Finally, the results were compared to an evenly distributed capital allocation portfolio 
containing the same assets. When the percentile rank and the empirical rule were used in 
conjunction with the VaR simulation for the same portfolio, the potential losses were 
reduced by 8.33%. These findings serve to emphasise the efficacy of using the historical 
method for the purposes of risk management, and the optimisation of portfolio 
performance. 

4.2 Variance-covariance (parametric) method 

For the variance-covariance method, we began by using the historical prices and daily 
returns that had already been downloaded. Once we had the data, we applied the 
appropriate methodology to calculate the VaR for each asset. The first step was to 
calculate the standard deviation and the mean daily returns for each asset. Using these 
values, annualised volatility was calculated by multiplying daily volatility by the square 
root of 250, which is the total number of trading days per year. Additionally, to 
standardise the returns, we calculated the z-score for each asset. 

Using the quantile method, the 0.10 quantile was found, which represented the  
z-score with 90% confidence. This was then multiplied by the daily standard deviation to 
get the VaR at 10%. Using the z-score values, the daily VaR was multiplied by 
annualised volatility, which was calculated in the previous step, to get the annualised 
VaR at the 90% confidence level. To classify each asset into one of three categories (A, 
B, or C), the empirical rule 68-95-99.7 was used once again. We then allocated capital to 
each of the ranked investments and distributed the portfolio value (set at $100,000) 
equally to each, based on their respective allocations. 70% of the portfolio value was 
allocated to A-rank investments, 25% to B-rank assets, and only 5% to C-rank assets. 

Like before, the results were compared to an evenly distributed capital allocation 
portfolio containing the same assets. By employing the percentile rank and the empirical 
rule in tandem with the VaR simulation for the same portfolio, potential losses were 
mitigated by a significant 8.85%. These results underscore the method’s effectiveness in 
risk management and enhancing portfolio performance. 

4.3 Monte Carlo method 

Once again, for this method, we started by using previously downloaded historical prices 
and daily returns for all assets. After acquiring the necessary data, we applied the 
appropriate methodology to calculate the VaR for each asset. Since we already had the 
daily returns calculated, we started by using the Monte Carlo simulation to simulate 
10,000 random variables, based on each asset’s daily standard deviation and daily 
average price. Before generating the simulations, we calculated the mean and standard 
deviation for the daily returns of each asset. Then, we generated a total of 100,000 
simulations for all assets combined (10,000 for each). This allowed us to model potential 
returns based on a normal distribution, using the mean and standard deviation values. 
Upon completion of the simulation of daily returns for each asset, the resulting data was 
sorted in descending order, starting with the assets that exhibited the highest negative 
returns and ending with those exhibiting the highest positive returns. This allowed us to 
see the range of returns for each asset and identify the worst-case scenario in terms of 
daily losses. Using the quantile method, we found the 0.10 quantile, which represented 
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the daily VaR with 90% confidence. This meant that, on any given day, there was a 10% 
chance that the asset’s returns would fall below this threshold. With this information in 
hand, we created a new table of daily VaR at 10% for each asset. Then, we annualised the 
VaR for each asset. Once again, we used the empirical rule 68-95-99.7 to classify each 
asset into one of three categories: A, B, or C. Capital was then allocated to each of the 
ranked investments, and the portfolio value (set at $100,000) was equally distributed to 
each, based on their respective allocations. 70% of the portfolio value was allocated to  
A-rank investments, 25% to B-rank assets, and only 5% to C-rank assets. 

Again, the results were compared to an evenly distributed capital allocation portfolio 
containing the same assets. When the percentile rank and the empirical rule were used in 
conjunction with the VaR simulation for the same portfolio, the potential losses were 
reduced by 9.78%. These findings highlight the effectiveness of using the Monte Carlo 
method for managing risk and optimising portfolio performance. 

4.3.1 Portfolio simulation 
Furthermore, a portfolio simulation was conducted to compare the effectiveness of two 
capital distribution methods over a period of one year: 

1 VaR, percentile rank and empirical rule 

2 equal distribution (uniform allocation of capital). 

The simulation provides insights into the potential impact of the VaR methodology in 
managing portfolio risk, and the results are shown in Figure 4. The simulation was 
conducted between 1st January 2022, and 31st December 2022, spanning a total of 251 
trading days. The starting value for both portfolios was $100,000. The first method 
yielded a final portfolio value of 88,512.70, representing a loss of 11.49%. The second 
method generated a final portfolio value of 80,375.08, signifying a loss of 19.62%. 
Overall, the data indicates that the first method resulted in an 8.13% reduction in losses to 
portfolio value when compared with the second method. 

4.4 Discussion of findings and practical implications 

Upon conducting a comprehensive analysis of three different methods for calculating 
VaR with a 90% confidence level for the 10% VaR, several noteworthy observations 
were made about the risks associated with each method. The results indicated that using 
VaR, in combination with the percentile rank method and the empirical rule, could 
significantly improve portfolio risk management and capital allocation, while proactively 
minimising overall portfolio risk. The combination of VaR with these statistical measures 
resulted in a substantial reduction of potential portfolio losses when compared with a 
portfolio featuring an equal and uniform allocation of capital. Specifically, the historical 
method had the lowest losses, with a reduction of 8.33%, followed by the  
variance-covariance method, with 8.85%, and the Monte Carlo method, with 9.78%. 
Furthermore, a portfolio simulation was conducted to compare two methods of capital 
distribution over a period of one year: 

1 VaR, percentile rank, and empirical rule 

2 equal distribution. 
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The first method resulted in a loss of 11.49%, while the second resulted in a loss of 
19.62%. Therefore, the first method resulted in an 8.13% reduction in losses to portfolio 
value when compared with the second method, highlighting its effectiveness in managing 
risk. 

Figure 4 Loss comparison; VaR and percentile rank and empirical rule vs. equal destitution  
(see online version for colours) 

 

In conclusion, this research provides valuable insights with profound implications for 
business and management practices. It offers a practical framework for effective risk 
management and asset allocation. In general, it enables businesses and portfolio 
managers to make more informed decisions. This increased awareness allows for a more 
precise and tailored approach to investment strategies. The research introduces a 
systematic framework for managing risk exposure, equipping organisations with the tools 
to identify, assess, and mitigate risks more effectively. By doing so, it reduces the 
likelihood of unexpected losses and enhances overall financial stability. Furthermore, the 
research emphasises the importance of allocating capital based on each asset’s risk score. 
This optimisation of capital allocation ensures that resources are channelled where they 
can generate the most favourable risk-return trade-offs. It is a strategy that can lead to 
improved portfolio performance and returns. Additionally, the practical approach 
presented in this research contributes to risk reduction. By proactively implementing 
strategies that minimise overall portfolio risk, businesses are better equipped to withstand 
market fluctuations and economic uncertainties. By aligning capital allocation with asset 
risk scores, businesses have the potential to enhance their investment outcomes. Finally, 
these implications extend beyond individual businesses, to the broader fields of finance 
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and investment management. The findings from this research act as a valuable playbook 
for industry professionals seeking to optimise their capital allocation strategies and risk 
management practices. In essence, this research equips businesses and managers with a 
practical and systematic approach to navigating the complexities of risk management and 
asset allocation. It contributes to the creation of more resilient and successful financial 
strategies, ultimately benefiting businesses and the broader financial industry. 

5 Conclusions 

Upon conducting a comprehensive analysis of three different methods for calculating 
VaR, several noteworthy observations were made about the risks associated with each 
method. The results indicated that using VaR in combination with the percentile rank 
method and the empirical rule could significantly improve portfolio risk management and 
capital allocation, as well as proactively minimise overall portfolio risk. The combination 
of VaR with these statistical measures resulted in a substantial reduction of potential 
portfolio losses when compared with a portfolio featuring an equal and uniform 
allocation of capital. For this paper, we used three portfolio analysis methods: the 
historical method, the variance-covariance method, and the Monte Carlo method, to 
assess the risk associated with each asset. Interestingly, the results showed that the assets 
were ranked identically across all three methods, indicating relatively similar levels of 
risk. This was attributed to the fact that the models did not identify significant variances 
between the methods, thereby indicating that each method produced similar levels of risk. 
After ranking each asset using the percentile rank method and the empirical rule, they 
were assigned one of three categories: A, B, or C, where A denoted the best score and C 
the worst. The top 16% of results were assigned to category A. The middle 68% of results 
were assigned to category B. Any values that fell below the bottom 16% of results were 
assigned to category C. Based on these rankings, 70% of the capital was allocated to  
A-ranked assets, 25% to B-ranked assets, and 5% to C-ranked assets. This data-driven 
methodology allowed for comprehensive assessments of the performance of each asset, 
with a high degree of accuracy, and guided capital allocation decisions effectively. 

The research provides convincing proof that using VaR in combination with the 
percentile rank method and the empirical rule can considerably improve portfolio risk 
management, and the allocation of capital, as well as proactively and systematically 
decrease overall portfolio risk. The findings demonstrate that incorporating VaR in 
conjunction with the percentile rank method and the empirical rule can significantly 
reduce portfolio losses when compared with a portfolio that features an equal and 
uniform allocation of capital. Specifically, the historical method had the lowest losses, 
with a reduction of 8.33%, followed by the variance-covariance method, with 8.85%, and 
the Monte Carlo method, with 9.78%. 

In addition, a portfolio simulation was conducted, comparing two methods of capital 
distribution over a one-year period: 

1 VaR, percentile rank, and the empirical rule 

2 equal distribution. 

The simulation tracked portfolio values from 1 January to 31 December 2022, with both 
portfolios initially set to a value of $100,000. The first method resulted in a loss of 
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11.49%, while the second resulted in a loss of 19.62%. Therefore, the VaR, percentile 
rank, and empirical rule method proposed in this article led to an 8.13% reduction in loss 
of portfolio value compared to the equal distribution method, highlighting its 
effectiveness in managing risk. 

While the findings of this study provide valuable insights, it is important to recognise 
the limitations of this research. The sample size of only ten assets over a ten-year period 
may not be representative of all market conditions and investment scenarios. Moreover, 
the virtual portfolio’s constraint of 251 trading days limits its ability to capture the 
intricacies of longer-term trends. Future investigations should therefore consider 
incorporating a more realistic and extended trading calendar, to better simulate actual 
market conditions, and facilitate a more comprehensive exploration of risk and return 
trade-offs. These constraints are pivotal to understanding the context of the findings and, 
consequently, to shaping future research directions. 

To address the limitations, future research should focus on expanding the sample size 
to include a more diverse range of assets, as well as extending the time horizon beyond 
ten years. Exploring different trading frequencies, such as weekly or monthly, could also 
provide insights into the adaptability of strategies. Additionally, incorporating geographic 
diversification by considering assets from various regions would enhance the study’s 
applicability to global markets. Doing so could contribute to a more nuanced 
understanding of the dynamics behind risk and return, to help guide investors across 
diverse market scenarios. 
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