Application of data driven models in estimating daily reference evapotranspiration in a coastal region
by Mohammad Taghi Sattari; Halit Apaydin
International Journal of Sustainable Agricultural Management and Informatics (IJSAMI), Vol. 10, No. 3, 2024

Abstract: An accurate calculation of the amount of water requirements for plants can create a more effective irrigation program. In this study, the daily reference evapotranspiration (ETo) was calculated by FAO-Penman-Monteith method and also estimated by three data-driven based models; M5Rule, support vector regression, K-nearest neighbours and a long-short term memory (LSTM) model based on deep learning. Eight meteorological variables (maximum and minimum daily temperature, maximum and minimum relative humidity, wind speed, sunshine duration, dew point temperature and monthly time index) and 15 different input scenarios were considered for modelling in a coastal agricultural land, namely, Tekirdag, Turkey. The results showed that all the models used presented highly accurate estimations. However, the deep learning based LSTM model yielded the most accurate result with 0.99 as the correlation coefficient and 0.25 as the RMSE. The results concluded that, by using only the maximum temperature or minimum temperature, the amount of ETo can be estimated with a high degree of accuracy without the need for other meteorological variables and physically based equations.

Online publication date: Fri, 05-Jul-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Sustainable Agricultural Management and Informatics (IJSAMI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com