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Abstract: The idea of active sensing is to embed sensor systems
with intelligence to require less human interaction. Accurate but limited
main measurement systems are complemented with broadband auxiliary
measurements that gather data and alert the main measurement to focus on
certain area. This is similar with the way that our eyesight works in context
of gathering data from our surroundings. The purpose of this study is to
introduce and test a control architecture that could improve the operation of
froth flotation process. An active sensing architectures on linear quadratic
Gaussian control is developed and tested in a simulation environment based
on plant data for froth flotation with X-ray fluorescence and visible and
near-infrared measurements. The architecture is tested in cases where external
disturbances or auxiliary measurement model drifting go unnoticed by the
main measurement. In both scenarios, the anomalies are successfully corrected
by the active sensing architecture.
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1 Introduction

When concentrating minerals with the froth flotation process as the separation method,
conventionally the X-ray fluorescence (XRF) analysers measure the concentrations
online accurately but at a slow sampling rate, typically one measurement per five
minutes. As XRF analysers are expensive, they commonly measure multiple slurry
lines sequentially. As an alternative, spectral measurements that cover the visible
and near-infrared (VNIR) ranges (400–1,000 nm) have been studied (Haavisto, 2009).
These measurements have a high sampling rate (one measurement every 3 s) and are
less expensive than XRF analysers. However, VNIR measurement is not as accurate
as XRF measurement and it must be continuously calibrated based on the XRF
measurement results. Some previous attempts at the control of the froth flotation process
are reviewed in Quintanilla et al. (2021). Our study builds on this by developing a
model predictive controller (linear-quadratic Gaussian) with exception handling. The
used research methods are: system model identification using data from a commercial
simulator of the froth flotation process, linear quadratic Gaussian controller tuning, and
simulations of the process using the derived control and exception handling architecture
in MATLAB environment.

As the XRF measurements are slow, their measurement schedule must be optimised.
The deployment of XRF measurements in the use case of this paper is an example
of the sensor management problem, defined as “control of the degrees of freedom
in an agile sensor system to satisfy operational constraints and achieve operational
objectives” (Hero and Cochran, 2011). The operational constraint here is the limited
amount of measurement systems available and the operational objective is to obtain the
best estimate of the process variables, which in the case of linear-quadratic-Gaussian
(LQG) systems optimises also the control performance (Meier et al., 1967). Sensor
management problems in process industry applications have been previously studied
in, for example in Raunio and Ritala (2018). The sensor management problem is an
example of a partially observable Markov decision process or POMDP (Sigaud and
Buffet, 2013).

A control method based on LQG-control and exception handling is derived in this
paper and tested in a simulated froth flotation process. We enhance the performance of
the flotation line by optimising the sampling schedule of concentration measurement and
analysing how an accurate sampling measurement is to be combined with a less accurate
measurement that can measure concentrations at all sampling lines simultaneously. In
particular, the latter measurement provides alarms to the former one about process upsets
that the measuring schedule has prevented from observing directly. Should such an upset
be severe enough, the normal schedule can be interrupted and the upset verified. The
method derived in this paper is generalised for any similar process.
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This paper is organised as follows. The froth flotation process, and XRF and VNIR
measurements are shortly described in Section 2. In Section 3, the active sensing
methods used in this study are defined: LQG control for determining the optimal
measurement sequence with interruptions due to exceptional VNIR data. In Section 4
the architecture for general active sensing approach derived in this paper is explained.
Section 5 defines the process model and ties the methods and algorithms introduced in
Sections 3 and 4 for the use case of froth flotation. Section 6 reviews the simulation
study results for the use case. Conclusions and discussion are presented in Section 7.

2 Process

2.1 Froth flotation

Froth flotation is the separation of minerals from each other according to the differences
in the hydrophobicity of particles (Fuerstenau et al., 2007). A slurry of mixed minerals
and water, the feed, enters a set of flotation tanks arranged in series, the flotation line.
Each tank contains water, and a reagent is added to change the hydrophobicity of certain
particles in the incoming slurry. Air is blown to the bottom of the tanks, making bubbles
that encase the more hydrophobic particles, while the less hydrophobic ones remain
in the tanks and continue to flow to the next tank. The particles caught by the air
bubbles rise to the top of the tank forming the froth zone and then overflow out of
the tank. The froth overflow rate is called the froth speed. The overflown froth from
each tank is collected and is called the concentrate. The slurry that is not collected in
any of the tanks in frothing is called tailings and flows out of the last tank in the line.
The concentrate and tailings may be used as feed in another flotation line, where the
separation of minerals is continued with different reagents and objectives.

The objective of the flotation process is to maximise the concentration of the wanted
mineral in the concentrate, and the recovery of the wanted mineral from the original
feed. The grade of the feed, concentrate and tailings is defined as the mass fraction of
the wanted mineral in the slurry when water is excluded. Recovery is the fraction of
the wanted mineral that is collected from the feed to the concentrate. A steady state
value of the recovery can be calculated from feed, concentrate and tailings grades. Let
F , C, T be the total masses of the feed, concentrate and tailings respectively, then the
nonlinear recovery (in percentages) is

rnl =
Cca
Ffa

= 100
ca(fa − ta)

fa(ca − ta
, (1)

where ca,fa and ta are the values of concentrate, feed and tailings grades respectively.
Equation (1) follows from the fact that mass is preserved, hence for mass fractions it
holds that

Ffa = Cca + Tta (2)

and for total mass (multiplied by ta) that

Fta = Cta + Tta. (3)
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Solving both for Tta and comparing yields

C

F
=

fa − ta
ca − ta

Both grade and recovery are controlled in a cascade by the froth speeds, which in turn
are controlled mainly by the air flow into the tanks. A higher froth speed will yield a
better recovery in the concentrate, but a lower grade. The control objective is to maintain
the grade and recovery at a setpoint, chosen to be the appropriate balance between grade
and recovery.

Figure 1 A diagram of the froth flotation process

2.2 XRF measurement

XRF technique is based on using excitation radiation on the sample to generate
ionised atoms by photoelectric absorption. The fluorescence yield of these absorptions
is measured with a spectrometer (Margui and Grieken, 2013).

In this study the main assay measurements were gathered from a plant with an XRF
analyser. This analyser has a centralised structure where slurry samples are continuously
fed to the analyser from different parts of the process through primary sampling pipes.
A multiplexer then arranges the samples to be analysed sequentially from each primary
line. Samples are analysed with a single X-ray tube and a spectrometer. A multivariate
regression model to calculate assays from the measured spectra is calibrated with
laboratory measurements (Haavisto, 2009).

Sample measurement time of an XRF analyser is typically 15–60 seconds in real
applications and the number of measured streams varies between 6 to 18 depending on
the type of the analyser. With these measurement times the accuracy of an XRF analyser
under normal operation conditions is typically 3–6% relative standard deviation for
minor concentrations and 1–4% for major concentrations when the mineral concentration
levels are well above the minimum detection values of 0.001% of slurry weight.

2.3 VNIR measurement

The colour of the froth in some mineral flotation processes correlates with the mineral
composition in the froth (Gebhardt et al., 1993). Based on this correlation, there have
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been studies on if the slow measurement rate of XRF-analysers can be improved on
with reflective spectroscopy (Haavisto and Hyötyniemi, 2011).

In reflective spectroscopy the sample is first stimulated with electromagnetic
radiation and then the intensity of the reflected light is measured. The wavelength
range of VNIR is from the short wavelength visual, 400 nm to 2,500 nm where
mid-wavelength infrared wavelength starts. However, in practical cases the VNIR
range used covers wavelengths between 400 and 1,000 nm, because this is the most
cost-effective range for measurement instruments.

Figure 2 VNIR and XRF measurements in the slurry line of the flotation process

In this study we have used the data collected from an industrial flotation process
with both XRF- and VNIR-measurements as a basis for the simulated active sensing.
Here VNIR-measurements were made every three seconds and the mean of last ten
measurements is taken for concentration estimation with the latest model that has in
turn been adapted according to the most recent XRF-measurement. Figure 2 shows the
positioning of XRF and VNIR-measurements in the slurry line of the flotation process
with respect to each other and the main process flow.

3 Optimal control with exception handling

3.1 LQG-control with active sensing

In this paper, LQG control is studied. The control action is based on an estimate of
the current state of the process, and this estimate is based on measurements of the
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process, making the measurement choices crucial for control efficiency. In unconstrained
LQG problems, the optimal control law and measurement choice for each timestep have
an exact solution that is separable with respect to control and measurement (Meier
et al., 1967). Moreover, the measurement policy can be solved offline, with very
little computations online required, given that the optimal sequence is applied without
interruptions. However, in real processes optimal sequences must be occasionally
interrupted due to for example external disturbances.

A process model is used to approximate the real process and to derive model
predictive control. The model is a state space model linearised at the chosen operating
point of the process. The process noise is assumed Gaussian, uncorrelated in time. The
goal of the control is to minimise a cost function quadratic in deviations from the
operating point. The process model is written as

xn+1 = Axn +Bun + ϵn, ϵn ∼ N(0,Σ(p)) (4)

The elements of the vector xn are the states and elements of un are the control signals.
The random vector ϵn is the process noise. It is normally distributed and has zero
mean and the covariance matrix Σ(p) is diagonal, which means that the states are not
correlated. The matrix A dictates how the states evolve in time with respect to each
other. The matrix B dictates how the control signals affect the states. The measurement
model of the process is

zn = Cnxn + νn, νn ∼ N(0,Σ(m)
n ) (5)

where zn is the measurement result. The matrix Cn is the measurement model matrix
at time n. The measurement model at each time step is chosen amongst a set of values
and number of rows according to the different measurement options of the process. The
dimension of the measurement result zn depends on the chosen measurement matrix and
can be a scalar or a vector consisting of multiple measured outputs. The random vector
νn is the measurement noise corresponding the chosen measurement model matrix Cn

and has a diagonal covariance matrix Σ
(m)
n .

The real-life process state is represented by the Gaussian information state, which
consists of an estimate of the state vector and uncertainty covariance matrix of the
estimate. The information state is updated according to Kalman filter consisting the
prediction step that updates the information state using the process model and the
control action, and the measurement update step that updates the information state with
measurement data.

We denote the estimate by µn and its uncertainty by Σn. The time index n is
followed by a plus-sign if measurement data has been obtained in that time instance
and Kalman filter measurement update has been made. A minus-sign following the time
index notes that the measurement update has not yet been made at that time. With this
notation, the Kalman filter prediction step updates the information state according to

µn+1− = Aµn+ +Bun

Σn+1− = AΣn+A
ᵀ +Σ(p). (6)

If a measurement result zn+1 is obtained from the real process, the Kalman filter update
step updates the information state according to

Ln+1 := Σn+1−Cn+1

(
Cn+1Σn+1−C

T
n+1 +Σ

(m)
n+1

)−1
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µn+1+ = µn+1− + Ln+1(zn+1 − Cn+1µn+1−)

Σn+1+ = I − Ln+1Cn+1Σn+1− (7)

where Cn+1 is the measurement model matrix corresponding the measured output results
zn+1 and Σ

(m)
n is the covariance matrix describing the corresponding measurement

noise. The matrix I is an identity. The goal of the control is to minimise the expected
value of a cost function quadratic in the measured outputs at each timestep n:

VN [µn+,Σn+] = minE

(
N−1∑
i=0

(y
ᵀ
n+i+1Qyn+i+1+uᵀ

n+iRun+i)

)
(8)

where Q and R are symmetric positive-semidefinite matrices. These matrices define
how much cost occurs when the system deviates from the operating point and when
control action is taken. The vector yn = Cxn, where C is a matrix that is comprised of
all the Cn stacked, are the measurable outputs of the state space model. Scalar N is the
optimisation horizon. The minimisation is done by choosing control actions un+i and
measurement options Cn+i+1 up to the horizon N so that the cost function VN attains
its minimal value.

The cost function can be separated into two minimisations using the optimality of
the Kalman filter and properties of random variables (Burl, 1999). One part is optimised
solely over control actions and the other one solely over measurement actions. The cost
function becomes

VN [µn+,Σn+] = min
(
(un +KNµn+)

ᵀΦN (un +KNµn+)

+ µᵀ
n+QNµn+

)
+ min

{Cn+i}N−1
i=1

(
tr(QΣn+N−

+
N−1∑
i=1

(
tr(QΣn+i−) + tr(QN−iΣn+i+

))
,

where

ΦN = R+Bᵀ(Q+QN−1)B

KN = Φ−1
N Bᵀ(Q+QN−1)A

and QN is iterated as:

QN = Aᵀ
(
(Q+QN−1)

− (Q+QN−1)B(R+Bᵀ(Q+QN−1)B)−1Bᵀ(Q+QN−1)
)
A

Q0 = 0.

The minimisation with respect to control is solved by choosing un = −KNµn+ after
finding QN Franklin et al. (2006). The minimisation with respect to measurement action
sequence is a tree search: developing the estimate uncertainty up to the horizon N
according to Kalman filter for each choice of measurement sequences {Cn+i}N−1

i=1 and
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then calculating the cost for each sequence and selecting the optimal cost (Meier et al.,
1967). Pruning algorithms may be used to reduce the complexity of the calculations by
not checking sub-optimal branches of the tree search (Ross et al., 2008).

At each timestep, the optimisation described above must be solved using the
current estimate and its uncertainty. In the case of control, the estimate depends on
the measurement data obtained, hence the control action cannot be computed offline.
However, the factor KN does not depend on time and thus the optimal control
action is simple matrix multiplication given the current estimate. When optimising
the measurement action, a tree search is necessary at each timestep and the first
measurement is implemented to the real process. However, the estimate uncertainty is
independent on measurement data; it depends only which measurement action has been
chosen.

When the optimal measurement actions are taken the resulting uncertainties will
converge to periodic sequence and thus the sequence of optimal actions is also periodic
and can be solved offline. For this reason, an offline lookup-table of measurements may
be formed using iterative optimisation until the measurements and uncertainties converge
to a periodic sequence. This table may then be used when choosing the measurement
actions assuming that the pattern is followed at all times.

Online calculations of the optimal measurement actions may be required to obtain
optimal control upon starting the control when the information state is in transient
phase, or when the measurement action sequence deviates at some time instant from the
offline lookup-table for some reason. The offline lookup-table of optimal measurements
is obtained with the following algorithm:

1 Set initial guess for state covariance matrix Σ0
n+.

2 Calculate optimal {Cn+i}N−1
i=1 as described above starting from Σ0

n+.

3 Save Cn+1.

4 Set starting state covariance matrix Σ0
n+ to Σn+1+ resulting from Kalman filter

and measurement Cn+1.

5 Repeat steps 2–4 until the saved measurements Cn+1 in step 3 converge to a
recurring pattern.

6 The recurring pattern is the optimal offline measurement sequence.

3.2 Active sensing measurements

The control architecture introduced in this paper has two distinct measurements:
an accurate main measurement that measures only a subset of the outputs and an
inaccurate auxiliary measurement that measures all outputs at the same time. The
main measurement serves two purposes: the control of the process and updating the
measurement model in the auxiliary system. The purpose of the auxiliary system is
to alert the main system if it observes sudden deviation from the expected process
behaviour, which is likely to be observed by the main system only with considerable
delay. Sudden unexpected deviations in the outputs undetected by the main measurement
may happen between the main measurements if the process time constants are
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considerably smaller than the measurement interval, or in the periods when the main
measurement system is measuring other outputs.

The Kalman filter update step is applied recursively for each different measurement
result obtained at the same timestep. The information state updated by data from both
the main and auxiliary measurement systems is referred to as the primary information
state and the information state updated only by data from the main measurement
system is referred to as secondary (similarly primary/secondary estimate and estimate
uncertainty).

3.3 Exception handling

The main measurement and the auxiliary measurement must be compared with each
other at each time step of the process in question. Since both measurements are usually
executed at different times, it is necessary to estimate how well the latest measurement
represents the current state of the process, i.e., at each time instant an estimate of the
uncertainty for a measurement has to be known as a function of time that has passed
since the latest measurement. This uncertainty also includes the inherent process and
measurement noises. The surprise factor between main and auxiliary measurements can
be estimated with Mahalanobis distance-based (Mahalanobis, 1930) number as follows.

The Mahalanobis distance D between the Gaussian main measurement information
Xp

n and the Gaussian auxiliary measurement information Xs
n at the time instant n is

Dn = (µp,n − µs,n)
T (Σp,n +Σs,n)

−1(µp,n − µs,n) (9)

where µp,n is the expected value of the process state based on the main measurement
at time instant n, µs,n is the expected value of the process state based on the auxiliary
measurement at same time instant, is the uncertainty covariance matrix of the main
measurement information and Σs,n is the uncertainty covariance matrix of the auxiliary
measurement.

If the main measurement can be approximated to be exact, the covariance Σp,n

can be evaluated from process data using pure random walk model (Appendix A). If
the main measurement cannot be approximated to be exact, the uncertainties must be
estimated otherwise such as comparing the measurement data with other measurements
known to be exact.

A probability p(Dn) then indicates when the auxiliary measurement differs from the
main measurement more than the amount of Dn.

P (Dn) =

∫
(x−µ)TΣ−1(x−µ)>D

(2π)
1
2 exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
dd

=
Γ(d2 ,

D
2 )

Γ(d2 )
(10)

where d is the dimension of the state vector, Γ(s) is the gamma function and Γ(s, x)
is the incomplete gamma function. The difference is statistically significant at level p
when p(Dn) < p. For example, if there is a sudden change in the process but there has
not been a main measurement after that change the Mahalanobis distance grows and the
auxiliary estimate differs significantly from the main estimate.
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4 Architecture for active sensing

The LQG-control and exception handling introduced in Section 3 together form an
active sensing control architecture used to control the process optimally under normal
conditions, as well as to detect and handle any issues arising from external disturbances
or auxiliary measurement model errors.

Figure 3 Control and measurement architecture (see online version for colours)

Figure 3 depicts the control and measurement architecture. At each time step:

1 Main measurement data is obtained from the real process.

2 Both information states are updated according to Kalman filter and the process
model and main measurement data.

3 The auxiliary measurement model is updated according to measurements made by
the main measurement system.

4 Auxiliary measurement data is calculated according to the auxiliary measurement
model and measurement system signal from the process.

5 Primary information state is updated according to Kalman filter and auxiliary
measurement data.
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6 The P (D) values are calculated for each output.

7 The next main measurement and control law are chosen accordingly and applied
to the real process.

There are three distinct cases when choosing the next timestep main measurement
and control action. Under normal operation, the main measurement and control action
are chosen from the offline optimal measurement sequence according to LQG-control
defined in Subsection 3.1. The operation is considered normal when the primary
information state uncertainty is close to some state covariance matrix of the optimal
offline measurement sequence in terms of matrix norm. Normal operating conditions
also assume that no exceptions occur.

If exceptions have occurred, the next main measurement will be chosen according
to the largest P (D) value obtained according to Subsection 3.3, and the control law
will use the secondary estimate in the case of the outputs that have experienced an
exception. If no exceptions have occurred, but the information covariance is in transient
rather than in the regular offline-optimised value, the next main measurement will be
calculated online according to optimal LQG control.

The exceptions are detected by the auxiliary measurement. The auxiliary
measurement model is updated and will drift and yield erroneous data if not updated.
The auxiliary measurement result may deviate significantly from the secondary estimate
because of two alternative reasons: there has been a sudden process upset or the
measurement model of the secondary measurement has deteriorated considerably.
To distinguish between the two potential causes, the periodic sampling sequence
is interrupted, and the corresponding sampling line is measured with the main
measurement. If the significant deviation is due to the process, the estimates are updated
based on new main measurement data, whereas if it is due to deteriorated measurement
model, the model is updated with the main measurement data.

5 Active sensing for flotation process

The combination of LQG control and exception handling developed was tested and
demonstrated in a simulation of a single copper enrichment flotation line of eight
flotation tanks. An eight tank-simulation (Kortelainen, 2019) in the Outotec HSC
Chemistry 9 – simulator, hereby referred to as the process, was used to run step response
tests and the data obtained was used to build a linear state space model of the process

5.1 System dynamics

The manipulatable inputs of the process are the setpoints of the froth speeds in tank
groups 1–4 and tank groups 5–8. These are referred to as FrothSpeed1 and FrothSpeed2,
respectively. The feed grade is considered as a measurable, but non-controllable load
disturbance and it is modelled as a near-random walk. The controllable and measurable
outputs of the process are the concentrate grade and the tailings grade. The model has
19 states whose linear combinations form the outputs and one state that represents the
disturbance component. The inputs, disturbance and the outputs of the model represent
deviations from a linearisation point rather than their actual values. The discretisation
interval of the model is 300 seconds.
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The state and control dynamics matrices as well as the measurement matrices of
the model were identified with step response tests in the HSC-simulator. Step inputs in
the controls and the disturbance were made separately and the outputs were recorded.
The time was discretised to match the main measurement frequency. The discretisation
interval is much smaller than the relevant time constants of the process. Linear state
space models were fitted to match each discretised input-output data pair. The linear
models were then combined into a multiple-input multiple-output state-space model. The
dynamics and measurement matrices of the model are presented in Appendix B. The
linearisation point values are depicted in Table 1.

Table 1 Linearisation point

f0 0.91%
c0 3.50%
t0 0.047%

The process noise is set so that it appears as a zero mean gaussian white noise in
the measurable outputs with a standard deviation of 10% (30% for feed grade) of the
maximum perturbations in the step response tests. The covariance matrix of the process
noise for the outputs is then

Σ(p,o) =

0.0671 0 0
0 0.3179 0
0 0 0.0015

 ∗ 10−3.

This is converted to state process noise by finding a diagonal covariance matrix Σ(p)

that minimises the residual norm

CΣ(p)Cᵀ − Σp,0. (11)

In other words, the state process noise covariance matrix Σ(p) is set so that it produces a
close approximation of the wanted noise with a covariance matrix Σ(p,o) in the outputs.

5.2 Measurement models

The model has two measurements: one representing the VNIR measurement, which
is less accurate but can measure all the grades at each time instant. The VNIR
measurement result is modelled with the matrix C. The vector yn = Cxn = [f, c, t]ᵀ,
where xn are the states, represents deviations of the measurable outputs of the model
from the linearisation point: feed grade (f ), concentrate grade (c) and the tailings grade
(t). The VNIR measurement result at time n is zV,n = Cxn + vV,n, where vV,n is the
VNIR measurement noise. The measurement noise depends on time, since the VNIR
model is updated with the XRF measurement data and the accuracy of the VNIR model
depends on the time since the most recent measurement with the XRF.

XRF measurement result at time n is zC,n = Cnxn + vC,n, where Cn is a row of
C depending on which output the XRF is measuring. The XRF measurement noise
vC,n depends on which grade is measured and is proportional to the magnitude of the
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measured quality. The standard deviation of the XRF measurement is set to 0.05f0,
0.03c0 and 0.08t0 for feed, concentrate and tailings grade measurements respectively.

The VNIR model is updated and VNIR measurements are made only whenever
XRF measurement data is obtained in this use case. The XRF measurement interval is
smaller than the relevant time constants of the process, so no significant changes happen
between single discrete timesteps. The VNIR measurement acts to observe changes in
the process in all outputs at the same time, when XRF can observe only one at a given
time.

The VNIR measurement noise νV,n was calculated from six weeks of VNIR
measurements collected from a flotation process plant. This data was then used to
analyse how the uncertainty of VNIR-measurement increases as a function of time from
the most recent model update. The models that convert the spectral data of VNIR
measurements into concentration values are updated after every XRF measurement. To
get a good sampling of update intervals, older models were also used to calculate
concentrations from VNIR measurements.

Figure 4 VNIR measurement uncertainty for copper measurement as a function of time from
previous update with fit parameters (see online version for colours)

The XRF measurement was considered to be exact for the purposes of evaluating
the VNIR measurement uncertainties. Thus, the VNIR measurement error d(t) is the
difference between XRF and VNIR measurements. Here t is the time from the model
update. The d(t) : s were grouped into ten-minute sets so that t-window for each group
was ten minutes long. The variance of each group representing the uncertainty of the
VNIR measurement at that time since the last model update.

From the shape of the d(t) curve in Figure 4 the model to be fitted to this data was
decided to be of form:

σ2
i,n = αnσ2

i,0 + σ2
i,p

1− αn

1− α
(12)
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where σ2
i,0 is the variance of concentration i when t is 0 and n is the update-interval

in minutes. The fit parameters are α and σ2
i,p, of which α denotes the transitional rate

from minimum variance σ2
i,0 to saturated variance (σ2

i,p)/(1− α). These fitted parameter
values for each measured component can be seen in Figure 4.

This fit is then scaled in the linearisation point (f0, c0, t0) of the system. Also, the
VNIR measurement noise needed for each time step in exception handling is estimated
from this fit. This method can also be applied to other process components if needed.

5.3 Control goal

The control actions are applied according to the optimal control law discussed in
Section 3.1. The estimate used to calculate the control is chosen according to Section 4.
The control goal is to minimise the LQG cost function (8). A linearised representation
of the steady state concentrate recovery is added to the cost function as a controllable
variable. The linearisation is done by a second order Taylor polynomial. The linearised
concentrate recovery is

r = Jff + Jcc+ Jtt, (13)

where Ji are the partial derivatives of nonlinear recovery (1) in the linearisation point
and f , c, t are the model disturbance and outputs. The linearised concentrate recovery
represents a deviation of the recovery from its linearisation point r0 = 96.13%. The cost
function is of the form

VN [µn+,Σn+] = minE

(
N−1∑
i=0

Qcc
2
n+i+1 +Qtt

2
n+i+1

+ Qrr
2
n+i+1 + uᵀ

n+iRun+i

)
, (14)

where Qi are the weighting parameters of the controllable variables and are set when
tuning the control. This converts to the standard form LQG cost function with

Q =

 QrJ
2
f QrJfJc QrJfJt

QrJfJt Qc +QrJ
2
c QrJcJt

QrJfJt QrJcJt Qt +QrJ
2
t


and the measurable output vector y = [f, c, t]ᵀ. The vector u consists of the controls
and their weighting matrix R is set when tuning the control.

6 Simulation studies

6.1 Test environment

The simulations are run as a MATLAB script. The script consists of roughly three
components: model definition, solving the optimal offline measurement sequence and
control law, and the actual simulation.
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The model is defined as the pre-determined state space model and parameters are set
described in Subsection 5.1. In order to study different scenarios the LQG cost function
weighting parameters are varied in simulations. The measurement sequence and control
law are optimised offline according to Subsection 3.1. The simulation loops in time as
described in Section 4.

6.2 Optimal measurement in normal operating conditions

The effect of LQG cost function weighting parameters to the optimal offline
measurement sequence was tested. The weights were given a default value which are
depicted in Table 2.

Table 2 Default output weighting parameters

Qc,0 c−2
0

Qt,0 t−2
0

Qr,0 r−2
0

The default weights are set so that in the linearisation point, all outputs are given equal
weight in the cost function. These default weights were given different multipliers wc,
wt, wr (Qc = wcQc,0, etc.) and the resulting optimal offline measurement sequence was
recorded. The results are depicted in Table 3. The measurements are indexed 1, 2, 3 for
feed, concentrate and tailings grades respectively.

Table 3 Effect of choice of weighting parameters to optimal measurement sequence

[wc, wt, wr] Optimal offline measurement sequence
[1, 1, 1] 3-2-3-1
[2, 1, 1] 3-2-1
[150, 1, 1] 1-2-2-1-2
[1, 10, 1] 3-3-3-3-3-2
[1, 1, 30] 3-1-3-2-3-1

6.3 Exception handling in case of external disturbances

The ability of the exception handling to detect external disturbances when XRF
measurements are very limited was tested. The XRF was assumed to measure each
output of the modelled line equally. The measurement model was extended with a fourth
measurement to simulate the XRF servicing other flotation lines. The XRF was set to
measure the other flotation lines for 24 out of the 27 timesteps, with the remaining three
servicing the modelled line. When the XRF is servicing other lines, the Kalman filter
update step for the information state of the modelled line is an identity map, meaning
only model prediction and VNIR update are used. The online measurement optimisation
option was turned off since the other flotation lines are not modelled which would cause
the online optimisation to trigger constantly.
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Figure 5 Disturbance simulation results, (a) feed without exception handling (b) feed with
exception handling (c) conc. without exception handling (d) conc. with exception
handling (e) tails without exception handling (f) tails with exception handling
(see online version for colours)

(a) (b)

(c) (d)

(e) (f)

Note: Red stars depict XRF measurements.
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A stepwise external disturbance of magnitude 0.7 was introduced to the feed grade
right after XRF had just measured it, meaning the next measurement is scheduled to 27
timesteps away. The behaviour of the outputs and the estimates in cases where exception
handling is turned on/off were recorded and are depicted in Figure 5.

6.4 Exception handling in case of VNIR model inaccuracy

In this test, the VNIR measurement model was assumed to drift if not calibrated
regularly. Only the modelled flotation line was used, and the LQG cost function
weighting parameters were chosen such that the XRF measurement will not measure
tailings grade at all under normal operating conditions. The actual VNIR measurement
noise was assumed to start drift after it has not been calibrated in 50 timesteps. The
measurement noise variance was assumed to increase 1% for every timestep after 50
that the VNIR has not been calibrated for that output, while the model in the exception
handling calculations was assumed to behave as in Subsection 5.2. The VNIR model
was assumed to be corrected when the output is measured by the XRF.

Figure 6 VNIR model drift simulation results, (a) tails without exception handling (b) tails
with exception handling (see online version for colours)

(a) (b)

Note: Red stars are XRF measurement results.

The tailings grade and its estimates were recorded in cases where exception handling is
turned on/off and are depicted in Figure 6.

7 Discussion and conclusions

The simulation test results show improvement when the derived architecture is used.
In Subsection 6.2, the optimal measurement is shown to depend on the chosen goals
of the control. When an output is given a larger weighting factor, the optimal offline
measurement sequence will measure that output more frequently.

In Subsection 6.3, the process model is extended to consider multiple flotation
lines. The exception handling detects an unpredicted process disturbance and alerts the
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XRF measurement to verify it and correct the estimates. Significant improvement in
the ability to estimate the real state of the process can be seen. Similar unpredicted
disturbances could happen in all the flotation lines of a plant that has limited
XRF-measurements available. This would mean that the XRF could be scheduled so
that it follows an optimal pattern (in case that all the flotation lines can be modelled)
with the exception handling enabled. A more realistic scenario that does not require a
complicated model would be that the XRF measures all the outputs in some order with
the exception handling enabled, alerting the XRF whenever it is needed. If alerts from
different outputs would occur frequently, data of the alerts could be used to generate a
measurement pattern.

In Subsection 6.4, the VNIR model was assumed to drift from the assumed model.
The exception handling detects the model drift and alerts the XRF to calibrate it. The
drifting model produces estimates useless for control. In case of multiple flotation lines,
an optimal measurement sequence in terms of LQG-control could easily not contain one
of the outputs at all since the model predictive control will deduce some outputs from
the others easily. However, such a sequence will not take into account the drifting VNIR
model, hence the exception handling is critical.

As in the case of any closed loop control, the LQG does not function well when the
measurements are very limited and the operation of the process deviates from the given
model. When the unknown process disturbances happen only in part of the process, the
simulation studies show that the limited main measurement can be utilised to detect
and correct them given that the disturbance can be detected. This is the case with the
auxiliary measurement, that can not in itself be used for estimation and control due to its
inaccuracy. Scheduling the limited main measurements with the auxiliary measurement
data is shown to improve the quality of the estimates without human interaction, which
is the goal of active sensing.
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Appendix A

Estimating the covariance matrix of an exact main measurement

The covariance matrix ΣC,n for each moment n can be evaluated from the gathered
process data. When the process model is not known, a pure random walk model is used:

Xn = Xn−1 + En

En ∼ N
(
0,Σ(p)

)
where timestep is one minute. It is assumed that a main measurement is executed at
moment n and it is exact. It is also assumed that the next main measurement is executed
at moment n+N and it is also exact. Then

Xn+N = Xn +
N∑
i=1

En+i

Because the noise terms are independent, information about the state of the system
before the measurement at time n+N , which is the measure-based estimate of said
moment and its uncertainty, can be described by the distribution:

Xn+N ∼ N
(
Xn, N · Σ(p)

)
On the time instant n+N a sample of this random variable is gained, which can then
be used to estimate the process covariance matrix Σ(p). If the measurements were evenly
spaced, it would hold that

(Xn+N −Xn) ∼ N
(
0, N · Σ(p)

)
so the covariance of the consecutive observations is the estimate N · Σ(p). It also holds
true that:(

Xn+N −Xn√
N

)
∼
(
0,Σ(p)

)
which can be applied for unevenly spaced data. Let the measurements happen at time
instants n0, ..., nk, the algorithm for estimating the Σ(p) is:
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1 Form samples T1, ..., Tk

Tk =
xnk

− xnk−1√
nk − nk−1

2 Estimate the µT and covariance matrix

S(T ) =
1

K − 1

K∑
k=1

(Tk − µT ) (Tk − µT )

3 S(T ) is the estimate of Σ(p).

Appendix B

Figure B1 Froth flotation linear state space model parameters


