
 
International Journal of Business Process Integration and
Management
 
ISSN online: 1741-8771 - ISSN print: 1741-8763
https://www.inderscience.com/ijbpim

 
Microservices extraction through set of business processes
variants
 
Malak Saidi, Anis Tissaoui, Sami Faiz
 
DOI: 10.1504/IJBPIM.2024.10065254
 
Article History:
Received: 01 July 2023
Last revised: 01 July 2023
Accepted: 26 March 2024
Published online: 25 July 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijbpim
https://dx.doi.org/10.1504/IJBPIM.2024.10065254
http://www.tcpdf.org


186 Int. J. Business Process Integration and Management, Vol. 11, No. 3, 2024

Microservices extraction through set of business
processes variants

Malak Saidi*
National School for Computer Science,
Manouba, Tunis, Tunisia
Email: malaksaidi16@gmail.com
*Corresponding author

Anis Tissaoui
Faculty of Law, Economics and Management,
Jendouba, Tunis, Tunisia
Email: anis.tissaoui@fsjegj.rnu.tn

Sami Faiz
Higher Institute of Multimedia Arts,
Manouba, Tunis, Tunisia
Email: sami.faiz@isamm.uma.tn

Abstract: Managing multiple variations and versions of the same business process is a common
practice in many companies. Indeed, the executions of these processes differ from each other
according to human and contextual factors or also according to deliberate managerial decisions.
These multiple variants describe the different paths that the activities can take according to
these mentioned variations, which offer better flexibility, efficiency and adaptability for any
organisation. However, these variants constitute a monolithic system with components that are
strongly coupled. The latter can become more complex as it develops, with intertwined processes
and tight dependencies between features. Thus all the variants of BP will be bulky and difficult
to manage. Additionally, changes or updates in a monolithic system may require significant
changes across BP, which may lead to regression risks or maintenance challenges. In this
context, we aimed to propose an approach to migrate our monolithic system to a system with
components that are loosely coupled, strongly cohesive and fine-grained. It is a multi-model
approach representing a control and data dependency model and which takes as system input a
set of process variants. We used three different clustering algorithms to generate our candidate
micro-services.

Keywords: multiple variations; monolithic system; control and data dependency; micro-services.

Reference to this paper should be made as follows: Saidi, M., Tissaoui, A. and Faiz, S. (2024)
‘Microservices extraction through set of business processes variants’, Int. J. Business Process
Integration and Management, Vol. 11, No. 3, pp.186–198.

Biographical notes: Malak Saidi received her Master’s in Computer Science from the
University of Management, Economics and Law of Jendouba (Tunisia) in 2018. She is currently
a PhD student at the Higher National School of Computer Sciences, Manouba, Tunisia. She is a
member of DocSys Lab Of FSJEGJ, Jendouba. Her current research interests lie in the area of
business process and microservices identification. She has published papers in international and
national conferences: SITIS 2018, ICOST 2020, HIS 2021, ISDA 2021, Systems Engineering
2022 and ISDA 2022.

Anis Tissaoui is an Assistant Professor of Computer Science with Jendouba University,
Tunisia and a member of DOCSYS Research Team at VPNC Research Laboratory. He
received his PhD in Computer Science from Paul Sabatier University, France in 2013. His
research interests include knowledge acquisition and modelling, natural language processing and
terminology-based knowledge engineering. His work benefits from collaborations with linguists
and researchers in human factors. His contributions include methods and platforms for ontology
engineering from text, tools for pattern-based semantic relation extraction, and knowledge
representation to add lexical data to ontologies, with applications in semantic annotation and
information retrieval.

Copyright © 2024 Inderscience Enterprises Ltd.



Microservices extraction through set of business processes variants 187

Sami Faiz received his PhD in Computer Science from Orsay University (Paris 11). He is
currently a Full Professor in Computer Science with the Higher Institute of Multimedia Arts of
Manouba and a member of the Laboratory of Remote Sensing and Spatial Information Systems.
He published more than 150 papers in specialised conferences and journals. He is also an author
of three books in the framework of GIS.

This paper is a revised and expanded version of a paper entitled ‘Automatic microservices
identification across structural dependency’ presented at International Conference on Hybrid
Intelligent Systems, Springer International Publishing, Cham, December 2021.

1 Introduction

It is very common that any organisation, whether for
profit, government or others, is defined as a system where
value is created based on its business process model (BP).
Indeed, the life cycle of these organisations is characterised
by increasingly frequent phases of change due to the
continuous search for competitiveness (Baresi et al., 2017).

Consequently, the task of managing the evolution of
each organisation becomes a tedious task and requires a
very rapid adaptation of their BPs in order to increase its
agility and fluidity.

By definition, a BP represents a set of activities
that are strongly correlated to achieve a well-determined
organisational objective.

Thus, and despite the great desire of organisations to
remain proactive, the monolithic nature of their process
models (Ponce et al., 2016) places them before issues
related to the performance of their services at the cost of
the technical infrastructure and the cost of development and
maintenance.

A monolith describes a single block of strongly
connected components that complicates the process of
adapting to functional, non-functional, and structural
changes that organisations undergo. On the contrary, the
micro-services architecture (Djogic et al., 2018; Baresi
et al., 2017) has been invented since 2014 for the
development of modern applications and with the aim of
overcoming the shortcomings of these monolithic systems
such as the lack of agility, the problem of scaling up and
the strong interdependence of components.

This new architectural solution allows a monolith
to be broken down into components that are thinner,
highly cohesive and loosely coupled to scale easily to
changing market demands (Chen et al., 2017; Indrasiri and
Siriwardena, 2018).

So far, the micro-services identification exercise is done
intuitively based on the experience of system designers and
domain experts, mainly due to missing formal approaches
and lack of automated tools support.

In this context, research work has been proposed
recently (Gysel et al., 2016; Levcovitz et al., 2016; Mazlami
et al., 2017). Although business process models are a rich
reservoir of many details like who does what, when, where,
and why, BPs seem almost neglected in the exercise of
identifying micro-services.

To our knowledge, Amiri (2018), Daoud et al. (2020)
and Saidi et al. (2021a, 2021b) are the only ones to have
adopted BPs in this identification exercise.

The business process does not generally exist as singular
entities, but rather as a family of variants that must be
collectively managed (Rosa et al., 2017; Ayora et al.,
2016; Cognini et al., 2018). As is the case, for example,
for multinational organisations that use different process
variants depending on the country or according to different
regions of the same country. Similarly an insurance
claims process may run differently between different claim
processing centres.

Indeed, each variant may present differences in the
sequence of activities, the decision rules, the data flows
or the resources involved. These variants provide greater
flexibility, better adaptation to changes and optimisation
of resources, thus contributing to better efficiency and
adaptability of the company.

For these reasons, we aim to propose in this paper a
multi-model approach which aims to deal with the case of
several variants of business processes in order to analyse
control and data dependencies based on our previous work
(Saidi et al., 2021a, 2021b) at first and to calculate the
final dependency matrix based on our formulas proposed
in a second step and finally generate the micro-services.
To achieve our objectives, three main challenges have been
addressed in our study related to existing micro-services
architecture and solutions in practice:

1 Challenge 1: How can we identify micro-services
from a set of process variants to meet specific needs
or different contexts?

2 Challenge 2: How can we determine the appropriate
level of granularity for each micro-service by
modelling the control dependency linked to an
independent set of BP variants?

3 Challenge 3: How can we determine a good strategy
aimed at partitioning the data of a set of BP variants
in order to reduce communication and simultaneous
access to the same database while keeping a high
cohesion between the generated micro-services?

The rest of this paper is organised as follows. Section 2
presents the related work. Section 3 presents a case study,
gives an overview of our approach to automatically identify
micro-services from a set of BPs, and formalises the



188 M. Saidi et al.

control and data dependencies models. Section 4 presents
the implementation of our proposed approach. Finally, we
conclude with some future work.

2 Related work

The development of robust monolithic systems has reached
its limits since 2014, because the implementation of
changes in the current large, complex and rapidly evolving
systems would be too slow and inefficient. Currently, there
are a very large number of applications that migrate to a
micro-services architecture.

In Chen et al. (2017), the authors proposed a top-down
partitioning approach that is essentially based on a data
stream in order to overcome the shortcomings of the initial
system and migrate to a micro-services-based approach.
As a first step, they propose to generate a data flow
diagram (DFD) based on a natural language description.
In the second step, they propose to transform the initial
DFD into a purified DFD based on data operations.
Finally, the purified DFD will be transformed into a
decomposable DFD through a proposed algorithm to extract
micro-services.

In Josélyne et al. (2018), the authors used domain-driven
design (DDD) patterns to provide an approach for
identifying appropriate micro-services. First, developers
define a domain using a pervasive language. Domain
experts determine the boundaries of each system
responsibility and represent it as a business capability,
where a business capability is something a system does to
generate an output. Each business feature is a micro-service.

In Djogic et al. (2018), an approach for an architectural
reconstruction of an integration platform that was
initially based on an SOA architecture into a new
micro-services-oriented platform. This new architecture
solves the problem related to the large number of messages
that must be processed as well as the number of new
integrations that must be supported.

Romani et al. (2022) proposed a data-centric technique
to determine candidate micro-services and migrate legacy
software systems to a micro-services architecture. They
used the World Web Dictionary as an illustrative example,
elbow and k-means for the identification process.

Since enterprise developers are faced with the
challenges of maintenance and scalability of increasingly
complex projects. In Escobar et al. (2016), the authors
proposed a model-based approach to analyse the current
application structure and the dependencies between business
capability and data capability. This approach aims to break
down an application developed in J2EE into micro-services
through diagrams resulting from the analysis of data
belonging to each Enterprise Java Beans (EJB) using the
clustering technique.

In Sellami et al. (2022), the authors thought of an
approach for identifying potential micro-services from
the source code of a given application. This approach
is essentially based on the measurement of similarity
and dependence between the different classes of the

system based on the interactions and the terminology of
the domain used in the code. The authors used so a
density-based algorithm to generate a hierarchical structure
of recommended micro-services while identifying potential
classes.

Al-Debagy et al. (2022) proposed an approach based
on two essential steps; the first step is to represent the
source code as a class dependency graph. The second
step describes the graph clustering algorithm to identify
micro-services. This approach was tested with 8 different
applications and using 11 clustering algorithms to find the
most accurate and efficient algorithm.

In Baresi et al. (2017), the authors described
a semi-automatic approach for the micro-services
identification exercise. Indeed, a Restful API is proposed in
order to take as input a business model component which
describes the flow of requirements with its inputs and
outputs and the micro-services are subsequently generated
by processing this model. This approach is based on
measuring the semantic similarity of features described
through Open API specifications. The authors based
their approach on a multitude of specifications and they
compared the result with the results of software engineers
and the Service Cutter tool.

In Gysel et al. (2016), the authors presented a service
decomposition tool based on 16 coupling criteria from
industry and literature. They proposed a semi-automated
model for identifying services according to predefined
categories, based mainly on requirements artefacts. Each
category was objectively detailed certain consistent criteria
that the service had to present for its terminals through
approximation algorithms and the use of weights.

Although the business process is a central and crucial
element for the evolution and success of the company,
only four works that took the business process as input in
the exercise of discovering the appropriate micro-services.
In Amiri (2018), the author proposed a micro-services
identification method that decomposes a system using the
clustering technique. To this end, they modelled a system as
a set of business processes and they considered two aspects
of structural dependency and data dependency.

The approach is essentially based on three steps: first,
a TP relation that shows the structural dependency of
activities within a business process. Next, a TD relation
is defined to show the dependency of activities based on
their used data objects. In the end, these two dependencies
are aggregated into a single dependency matrix T. Amiri’s
approach can be extended to provide a method for
calculating the dependency of a set of business processes
that is independent.

Recently, Daoud et al. (2020) proposed to remove and
deal with the limits of the approach of Amiri already
mentioned in his work (Amiri, 2018). The essential goal
of the approach is to automatically identify micro-services
based on two dependency models (control and data)
and using collaborative clustering. To do this Daoud
et al. proposed formulas for calculating direct and indirect
control dependencies as well as proposed two strategies
for calculating data dependency. Then they used a



Microservices extraction through set of business processes variants 189

collaborative clustering algorithm to generate the candidate
micro-services.

In Saidi et al. (2021b), the authors proposed an
extension of the control model presented in Daoud et al.
(2020) They proposed four calculation formulas to calculate
the dependence taking into account the case of loopsequence,
loopAnd, loopXor, loopOr in order to calculate the
dependence matrix of control to subsequently generate the
appropriate micro-services. In Saidi et al. (2021a), the
authors presented an approach based on association rules to
calculate the correlation between the attributes of the set of
activities and to determine a dependency matrix based on
the strong and weak associations. This matrix will be taken
as input to the K-means algorithm to identify candidate
micro-services.

The use of a process variants becomes a crucial issue
for any modern organisation since it makes it possible to
better adapt to changes and specific requirements of the
environment.

Thus, these variants aim to optimise operations and
reuse existing processes by adapting them in a modular way
in order to save time and save resources when designing
new business process variants.

Despite the benefits of using the BP variant approach,
Amiri (2018) and Daoud et al. (2021) are the only ones
who have used a set of BPs as input in the micro-service
identification exercise.

For this reason, our main objective in this paper is
to take several independent business processes as system
input and identify the candidate micro-services using three
different clustering algorithms.

In fact, when it comes to identifying micro-services,
clustering is used to group activities of a BP that are
similar into distinct clusters or groups. This makes it
possible to effectively split a system into autonomous and
coherent micro-services. The clustering techniques, such as
hierarchical clustering, k-means or density-based clustering,
can be used to perform this task of generating potential
micro-services.

Cheung (2003) described an approach which is based
on global K-means algorithm. This incremental approach
makes it possible to add one centre cluster through a
deterministic search technique made up of N execution of
the algorithm starting from the appropriate initial position.

In Likas et al. (2003), the authors presented a new
generalisation of the a k-means algorithm and they made an
analysis of the penalised mechanism and they showed its
exceptional clustering performance through an experiment
results.

It can therefore be concluded that the case of several
BPs taken as input in order to identify the candidate
micro-services was treated only in a single work. We aim
so in this paper to propose a new method based on what
has been proposed in Daoud et al. (2020) and Saidi et al.
(2021a, 2021b) to generate micro-services from a set of
business process variants.

This article has been greatly extended from previous
work (Saidi et al., 2022) which proposed an approach to
identify microservices from the independent variants of
business processes.

3 Our approach for identifying micro-services

3.1 Our case study

In the film industry, image post-production is the process
that begins when filming is completed and deals with
the creative editing of the film. Figure 1 shows several
independent image post-production processes. A process
model is a graph composed of nodes of type activity,
gateway and arcs which are based on these elements.

Activities capture the tasks performed in the process.
Gateways are used to model alternate and parallel branches
and merges. They can be of type OR or XOR (inclusive
execution, exclusive execution) and AND.

The first process model BP1 in the figure presents three
activities (a1: retrieve images; a2: prepare film for editing;
and a3: finish editing film). The second model describes a
sequence of four activities, the first of which is an activity
shared with the first model (BP1). On the other hand, the
last process describes a model which contains a connector
of the exclusive gold type (Xor). This connector links
between two sequences of activities. This BP shares with
BP1 the three activities (retrieve images; prepare film for
editing; and finish editing film) and with BP2, its shares
(retrieve images, prepare editing on tape and finish tape
editing).

Our general idea is that from these three models
of independent processes, but that they share common
activities, we propose a method which is based on our
two models control (by analysing the structural aspect of
the process) and data (by analysing the correlation between
the attributes of each pair of activities) to determine our
candidate micro-services.

3.2 Foundations

It is well known that the business process represents
the organised set of activities and software, material and
human resources (Amiri, 2018), it is considered to be the
central element and the backbone of each company. As
a result, any economic success depends on the ability of
its information system and its business process to easily
integrate the changes imposed by the environment.

In this paper, we will be based on the business process
as a monolithic system in order to break it down into
appropriate micro-services using the dependency linked
to a given couple of activities. These micro-services are
fine-grained, loosely coupled and with strong cohesion.



190 M. Saidi et al.

Figure 1 An example of three independent BPs of the picture post-production process

We were able to identify four types of dependencies which
are marked below.

• Control dependency: This dependency is essentially
based on the order of execution (e.g., finish to start
. . . ) and the types of connectors that link the activities
(xor, and . . . ).

Indeed, according to this model if a given pair of
activities (ai, aj) is directly linked with a control
dependency, it will probably form a highly cohesive
micro-service. If not, these activities would form
separate micro-services (Saidi et al., 2021b; Daoud
et al., 2020).

The identification of micro-services from a set of BPs
taking into account the structural aspect of the model
allows us to decouple specific functionalities from
decisions and control mechanisms. This will facilitate
the management, maintenance and scalability of our
system, as well as it will promote reuse, modularity
and flexibility, allowing isolation of responsibilities
and finer management of workflows and control
logics.

• Data dependency: From this model, we aim to
represent the activities and attributes of our BP as a
binary representation (if the attribute is present in the
activity, we assign the value 1 if not 0). This
representation will be our system input and from
which we will use the association analysis method to
discover hidden relationships between the attributes of
a given activity pair.

Subsequently, if these activities share the same
attributes, it is very likely that they will be classified
in the same micro-service. If not, they will be
classified in separate micro-services (Saidi et al.,
2021a).

This dimension consists of analysing the data used
and manipulated by the system in order to identify
micro-services that have a high cohesion in terms of
processing this data.

The generation of micro-services from this dimension
can be combined with other approaches such as the
structural analysis of a BP in order to determine a
more complete and precise breakdown of the system
into micro-services.



Microservices extraction through set of business processes variants 191

Figure 2 Our proposed architecture (see online version for colours)

• Functional dependency: This method aims to break
down the global domain into sub-domains based on
the technique of DDD (domain-driven-design) so that
each identified sub-domain will be considered as a
micro-service. The really general idea of this
approach is to stay consistent when designing
micro-services with bounded context (BC). Indeed,
any domain (knowing that a given BP represents a
domain) is composed of several bounded contexts
where each one encapsulates the associated functions
in the model.

Micro-services represent, therefore these bounded
contexts being a good indication on a weak coupling
with the strong cohesion of micro-services.

• Semantic dependency: From this dimension, we aim
to identify micro-services by taking into account the
semantic similarity of the names of each activity in
order to group those that fall within the same
application domain together.

In this work we are only interested in control and data
dependency to identify appropriate micro-services from a
set of business process models.

3.3 The main steps of our approach

Through Figure 2, we identify three essential steps in our
proposed architecture.

• Dependencies examination: Through this step we will
analyse the specifications of each process taken as
system input and we will determine the dependence,
according to two dimensions: control and association
rules.

For each business process, we will determine its own
control dependency matrix analysing the different
types of connectors in the model and then applying
the appropriate formulas. In the same way, we extract
the matrices of each business process according to the
second type of dependence and by analysing the
model in terms of correlation between shared
attributes of each activity.

Indeed, for n process, we will have 2n dependency
matrices.

• Dependency matrix generation: In this step, we will
be based on the matrices generated in the previous
step in order to calculate the final dependence matrix.
To do this, formulas have been proposed for the
aggregation of these matrices. This part will be
described in details below.

• Micro-services candidate generation: In this last step,
we will be based on three clustering algorithm which
takes as input the generated dependency matrix to
identify the candidate micro-services.

Each cluster will contain activities that form a
micro-service candidate.



192 M. Saidi et al.

3.4 Micro-services identification

3.4.1 Analysing dependencies

• Control dependency formula

The control dimension of a BP refers to the way
activities are organised and interconnected. It allows
us to decouple the different logical parts of a system
into autonomous and independent services. This gives
us increased modularity, better code reuse and easier
system scalability.

To do so, we will calculate the dependency matrix for
each BP model separately by using the formulas given
in Saidi et al. (2021b) and Daoud et al. (2020) and
then we add up to generate a single output matrix.

Note: If there is not an arc that links between a
couple of given activities, we will assign the value
”0”.

Depc=∑n
i=1 (M1 (ai, aj) ,M2 (ai, aj) , ..Mn (ai, aj))

If we take the case of our example already
represented in figure 1 and we try to analyse the
control dependency.

a Control dependency matrix 1: We calculated in
this matrix (Table 1) the control dependency of
the first BP.

Table 1 Control dependency matrix 1

a0 a1 a2

a0 - 1/2 1/4
a1 1/2 - 1/2
a2 1/4 1/2 -

b Control dependency matrix 2: We calculated in
this matrix (Table 2) the control dependence of
second BP.

Table 2 Control dependency matrix 2

a0 a3 a4 a5

a0 - 1/2 1/4 1/8
a3 1/2 - 1/2 1/4
a4 1/4 1/2 - 1/2
a5 1/8 1/4 1/2 -

c Control dependency matrix 3: We calculated in
this matrix (Table 3) the control dependency of
the third BP.

Table 3 Control dependency matrix 3

a1 a2 a3 a4 a5 a7 a8

a1 - 1/4 1/8 1/4 1/16 1/8 1/32
a2 1/4 - 1/2 0 0 0 1/8
a3 1/8 1/2 - 0 0 0 1/4
a4 1/4 0 0 - 1/4 1/2 1/16
a5 1/16 0 0 1/4 - 1/2 1/4
a7 1/8 0 0 1/2 1/2 - 1/8
a8 1/32 1/8 1/4 1/16 1/4 1/18 -

Our global control dependency matrix will be so as
described in Table 4.

Table 4 Global control dependency matrix

a0 a1 a2 a3 a4 a5 a6 a7

a0 - 1/2 1/8 1/2 1/4 1/8 1/8 1/32
a1 1/2 - 1/2 0 0 0 0 1/8
a2 1/8 1/2 - 0 0 0 0 1/4
a3 1/2 0 0 - 1/2 1/4 1/2 1/16
a4 1/4 0 0 1/2 - 1/2 1/2 1/4
a5 1/8 0 0 1/4 1/2 - 0 0
a6 1/8 0 0 1/2 1/2 0 - 1/8
a7 1/32 1/8 1/4 1/16 1/4 0 1/8 -

• Association rules formula

For each pair of activities ai and aj the value of
Dep(ai, aj) is same in all the processes (if the process
has both activities), because an activity, even in
different processes use the same set of attributes,
therefore we will use a single binary representation
containing all the activities of our process models and
we will apply the algorithm for generating the final
dependency matrix proposed in Saidi et al. (2021a).

By analysing the three BPs in terms of data, the dependency
matrices is as shown in Figure 3.

Figure 3 Data dependency matrix (see online version
for colours)



Microservices extraction through set of business processes variants 193

To generate this matrix described in Figure 3, we used the
apriori algorithm implemented in Saidi et al. (2021a).

Indeed, we set the minimum support value to 0.5 and
the minimum confidence value to 0.7 in order to generate
the set of association rules that will be used later by the
dependency calculation algorithm (Saidi et al., 2021b).

3.4.2 Micro-services identification

The sum of the two previously generated matrices (data and
control) will be defined by performing the aggregation of
the corresponding elements of each matrix. The aggregation
is carried out by respecting the positions of the elements
in the two matrices. To reformulate all this mathematically,
we will use the element-by-element addition operation since
our two matrices are two of the same size. Indeed, their
sum creates a new matrix GM of the same dimension where
each element is calculated as follows:

gm[i] [j]= Sum(Depc [i] [j], DepD [i] [j])

where Depc[i] [j] is the element at position (i, j) of the
control matrix, DepD[i] [j] is the element at position (i, j)
of the data matrix and gm(i, j) is the element corresponding
to position (i, j) in the global matrix GM.

Table 5 Final dependency matrix

a0 a1 a2 a3 a4 a5 a6 a7

a0 0 4,94 6,695 38,53 20,3 37,305 44,555 38,061
a1 4,94 0 7,07 38,03 44,43 37,18 44,43 38,155
a2 6,695 7,07 0 38,03 22,18 44,43 44,43 38,28
a3 38,53 38,03 38,03 0 44,93 44,68 44,93 44,492
a4 20,3 44,43 22,18 44,93 0 44,93 44,93 44,68
a5 37,305 37,18 44,43 44,68 44,93 0 44,43 44,43
a6 44,555 44,43 44,43 44,93 44,93 44,43 0 44,555
a7 38,061 38,155 38,28 44,492 44,68 44,43 44,555 0

After generating our final matrix (Table 5), we will use
three different clustering algorithms (partitional clustering,
hierarchical clustering and distribution-based clustering) to
generate our candidate micro-services. Indeed, an example
of micro-services generation using K-means, agglomerative
algorithm and GMM is summarised through Table 6 which
each cluster describes a candidate micro-services.

Table 6 Micro-services identification

Clustering algorithm Clusters

Partitional clustering cluster 1 (a0, a6)
cluster 2 (a4, a5, a7)

cluster 3 (a1)
cluster 4 (a2, a3)

Hierarchical clustering cluster 1 (a0, a4, a6, a7)
cluster 2 (a1, a2, a3, a5)

Distribution-based clustering cluster 1 (a4, a7, a5)
cluster 2 (a2, a3)
cluster 3 (a1)

cluster 4 (a0, a6)

4 Experimentation

4.1 Experiment protocol

4.1.1 Method’s description

The method used consists of designing a
micro-services-oriented architecture based on a set of
business process variants. Our proposed architecture is be
based on two identification strategies: structural and data.
Indeed, it is composed of five essential modules as it is
modelled on Figure 4.

• Camunda modeller: In order to model our system
input, we will use Camunda which is designed
specifically for the BPMN workflow. This tool
actually allows us to generate two outputs. The first
in the form of a graphical representation on which we
will be based in the third module to describe the
attributes linked to each activity which are necessary
for the calculation of data dependency.

From an XML file generated by this tool, we will
apply the algorithm proposed in Daoud et al. (2020)
and Saidi et al. (2021b) in order to generate the
control dependency matrix.

• Control dependency module: This module therefore
takes as input the XML file generated by Camunda
and gives as output the control dependency matrix.

Indeed, according to the analysis of the type of
connector existing between an activities’ couple (ai,
aj), we will apply the formula which is appropriate to
the case (sequence, Xor, or, and, loop . . . ). We will
reuse so the formulas proposed in Saidi et al. (2021b)
and Daoud et al. (2020) to calculate this dependency.

• Association rules matrices generator: This module
takes as input the graphical representation of BP and
gives as output a data dependency matrix.

Indeed, based on the method proposed in Saidi et al.
(2021a), we will apply the proposed algorithm to
calculate the interesting correlations between the
different attributes of the three proposed business
process and thereafter the activities will share data
will be classified together.

• Global matrix generator: For n BP models, we will
have n matrices at the level of the first dimension
(control dependency) and the second dimension,
which is based on the identification of strong and
weak associations between activities. For this reason,
we proposed to make an aggregation of n matrices
generated for the first dimension and suddenly we
will have as output a single matrix instead of several.
For the second dimension, if a given pair of activities
(ai, aj) is the same in the other variants of BP, then it
will be the same dependency value, if not, this value
is recalculated by applying the method already
proposed in Saidi et al. (2021a).



194 M. Saidi et al.

As output, we will have two matrices. In order to
generate our final dependency matrix, we proposed to
take the ‘Sum’ of the two dependencies calculated for
a couple of activities (ai, aj).

Algorithm 1 Global dependency matrix

Input: Depc [i] [j], DepD [i] [j]
Output: GM [i] [j]
begin1

if n==m then2

for i=1 to n do3

for j=1 to m do4

GM[i] [j] ← Depc [i] [j]+DepD [i] [j]5

return GM6

end7

• Micro-services identification module: This module is
based on the global matrix calculated in the previous
module and using three different clustering algorithms
(k-means, agglomerative and GMM) in order to
identify our micro-services which are fine-grained and
with low coupling and high cohesion.

Table 6 summarises the classification results of the
different clustering methods that we used.

4.1.2 Experimental plan and data

The experiment will be conducted by determining the set
of clusters where each cluster contains the set of activities
that will be executed together using our three clustering
algorithms to guarantee fine granularity, weak coupling and
high cohesion of micro-services.

Our first control dependency dimension is implemented
in Java and the second data-oriented dimension will be
implemented in Python.

Regarding our dataset, it will be formed by three
different process variants as described previously
(Subsection 3.1).

In fact, the first BP is composed of a sequence of
three activities (a0: retrieve images, a1: prepare film for
editing, a2: finish editing film). The second is composed
of a sequence of four activities (a0: retrieve images, a3:
prepare editing on tape, a4: finish tape editing, a5: deliver
on new medium). This variant shares activity a0 with the
first BP. On the other hand, the third BP is made up of
seven activities (a0: retrieve images, a1: prepare film for
editing, a2: finish editing film, a6: transfer to telecine, a4:
finish tape editing and a7: finish assembly) including a0,
a1, a4 are activities in common with the two previous BP
variants.

4.1.3 Validation and evaluation

The evaluation of the clustering results can be carried
out using different criteria to measure the quality of the
partitions obtained. In this context, we chose to use three
different clustering algorithms (K-means, agglomerative
and GMM) and to evaluate the results obtained by each
algorithm. To do this, several metrics can be considered
such as the silhouette index, which measures how similar
the instances of the same cluster are to each other
compared to the instances of other clusters and we will
use Dunn’s index, which evaluates the minimum distance
between clusters and the maximum distance within clusters.
By combining these different metrics and evaluation
approaches, it will be possible to compare and evaluate the
performance of the three clustering algorithms used (more
details in the next section).

Figure 4 Micro-services identification architecture (see online version for colours)



Microservices extraction through set of business processes variants 195

4.2 Experiments

Clustering is a set of techniques used to divide data into
groups or clusters.

In our work, we consider an activity of each BP as
a distinct object. The activities that belong to the same
cluster are supposed to be as homogeneous as possible to
ensure the cohesion property of a group. On the other hand,
activities belonging to different groups are supposed to be
as distinct as possible to define a loose coupling of a group.
Each cluster could be a candidate micro-service.

In our evaluation, we will use three clustering
algorithms: partitional, hierarchical and distribution-based
algorithms.

• Partitional clustering: Divides data objects into
disjoint groups.

K-means tries to minimise the intra-cluster inertia
which measures the cohesion of the points inside each
cluster.

Our objective through this algorithm will therefore be
to find the centroids which minimise the sum of the
squares of distance between the points and their
respective centroids.

It is important to mention that this algorithm may
converge to a local minimum, which means that it
may not find the best global solution.

So that we can solve this problem, we can run our
algorithm several times with different random
initialisations and then select the best solution in
terms of intra-cluster inertia. With the result of the
implementation of the K-means algorithm, we have
identified four different clusters.

• Hierarchical clustering: Determines cluster
assignments by creating a hierarchy. We chose in our
case the agglomerative clustering. With the
agglomerative algorithm, the number of clusters is
generally not fixed in advance, but is determined by
the algorithm itself according to the grouping criteria
used.

However, there are widely used techniques for
determining the number of clusters in an
agglomerative algorithm such as the elbow method.
We used this method to run our algorithm for
different numbers of clusters and then compute the
intra-cluster dissimilarity each time.

Thereafter we draw the curve according to the
number of clusters and we seek the point where the
addition of additional clusters no longer brings
significant improvement. With the result of the
implementation of the agglomerative algorithm, we
have identified two clusters.

Elbow method will not necessarily provide us with
the exact and optimal number of clusters, but it
provides indications on the appropriate number of

clusters according to our data and our grouping
criteria used.

• Distribution-based clustering: Gaussian mixture
models (GMMs) assume that there are a number of
Gaussian distributions, and each of these distributions
represents a cluster. Therefore, the Gaussian model
mixture algorithm begins with the initialisation of the
model parameters. This involves specifying the
number of clusters and estimating initial parameters,
such as means, component weights, etc.). Once the
model parameters have converged, data points are
assigned to clusters based on their maximum
membership probability. Each activity will be carried
out in the cluster that best corresponds to it in terms
of similarity according to the Gaussian distribution of
the model.

The silhouette measurement is used in our evaluation as
an internal validation method to assess the quality of the
scores obtained. By comparing silhouette values between
algorithms, one can get an indication of which produces
more consistent and distinct partitions. This can help choose
the most appropriate algorithm for a specific dataset.

Figure 5 Silhouette score in Python (see online version
for colours)

Indeed, the silhouette score is a measure used to calculate
the quality of a clustering technique. Its value is between
–1 and 1. Where a high value indicates that the object
is well-classified to its own cluster and poorly suited to
neighbouring clusters. If most of the objects have a high
value, the clustering configuration is adequate.

• 1: means that the clusters are well separated from
each other and clearly distinguished

• 0: means that the clusters are insubstantial, or we can
say that the distance between the clusters is not
significant

• –1: means that the clusters are assigned in the wrong
direction.

By using this method (silhouette score) of interpretation
and validation of consistency within data clusters, we were
able to obtain a small comparison (Figures 6 and 7) on
the quality of the classification of each clustering algorithm
used.

Indeed, through the analysis of the results obtained, we
can deduce that in our case the agglomerative algorithm
generates so better results compared to the other two
algorithms.

Also, by making a comparison in terms of execution
time between the three algorithms and by varying the
number of clusters (figure 8), we see that the K-means



196 M. Saidi et al.

algorithm has the highest value when the number of clusters
is equal to 2, 3 or 4 on the other hand the agglomerative
algorithm was executed in a minimum period of time.

Figure 6 Comparison’s results

Figure 7 Qualitative comparison (see online version
for colours)

Figure 8 Comparison in terms of execution time
(see online version for colours)

We used the Dunn index validation metric which will allow
us to measure the quality of micro-services.

A higher Dunn’s index indicates that the instances in
each cluster are tightly packed together, while the clusters
are well separated from each other. This makes it easier to
communicate the results to the stakeholders and to make a
decision regarding the choice of the best partition.

In Figures 9, 10 and 11, we measured the Dunn’s
index of the clustering algorithm using matrices of
control dependencies, data and the aggregation of the two
dimensions together (the cooperative case). The results
obtained in the three experiments clearly showing that that
the Dunn’s index in the case of the data dimension is then
almost always better than the control Dunn’s index. This
means that for a given BP, the data dependency model is

richer and more informative than the control dependency
model.

Figure 9 Dunn index with K-means (see online version
for colours)

Figure 10 Dunn index with GMM (see online version
for colours)

Figure 11 Dunn index with agglomerative technique
(see online version for colours)

Indeed, the quality of the final generation of micro-services
is often much better by combining the two dimensions
together (control and data).

By analysing the results obtained by the three
algorithms, we see that for the quality of a partition in terms



Microservices extraction through set of business processes variants 197

of separation between the clusters and the compactness of
the clusters, the agglomerative algorithm gives better results
compared to those generated by K-means and GMM.

5 Conclusions

Any organisation, whether non-profit, governmental or
private, has been designed as a system where value is
created through its business process model.

Indeed, the difference between a simple business process
model and a set of variants of it lies in the ability to take
into account the specific variations and conditions that can
arise in the operational environment of a company. These
variants offer greater flexibility and better adaptation to
changes, thus contributing to greater efficiency and better
adaptability of the company.

However, these process variants describe a monolithic
system with components that are tightly coupled.

For these reasons, we have proposed an approach
to decompose this system into appropriate micro-services
based on the two dimensions control and data and using
three different clustering algorithms.

As future work, we aim to improve our evaluation part
by making a comparison between the results of the final
micro-services generated using what we proposed in this
approach (aggregation of models for a set of BPs) and the
collaboration method (using collaborative algorithms ) and
to treat the dependency between a couple of activities in a
configurable process model.

References

Al-Debagy, O. and Martinek, P. (2022) ‘Dependencies-based
microservices decomposition method’, International Journal of
Computers and Applications, Vol. 44, No. 9, pp.814–821.

Amiri, M.J. (2018) ‘Object-aware identification of microservices’,
2018 IEEE International Conference on Services Computing
(SCC), July, IEEE, pp.253–256.

Ayora, C., Torres, V., de la Vara, J.L. and Pelechano, V.
(2016) ‘Variability management in process families through
change patterns’, Information and Software Technology, Vol. 74,
pp.86–104.

Baresi, L., Garriga, M. and De Renzis, A. (2017) ‘Microservices
identification through interface analysis’, Service-Oriented and
Cloud Computing: 6th IFIP WG 2.14 European Conference,
ESOCC 2017, Proceedings, 27–29 September, Springer
International Publishing, Oslo, Norway, Vol. 6, pp.19–33.

Chen, R., Li, S. and Li, Z. (2017) ‘From monolith to microservices:
a dataflow-driven approach’, 2017 24th Asia-Pacific
Software Engineering Conference (APSEC), IEEE, December,
pp.466–475.

Cheung, Y.M. (2003) ‘k-Means: a new generalized k-means
clustering algorithm’, Pattern Recognition Letters, Vol. 24,
No. 15, pp.2883–2893.

Cognini, R., Corradini, F., Gnesi, S., Polini, A. and Re, B. (2018)
‘Business process flexibility – a systematic literature review
with a software systems perspective’, Information Systems
Frontiers, Vol. 20, pp.343–371.

Daoud, M., El Mezouari, A., Faci, N., Benslimane, D., Maamar, Z.
and El Fazziki, A. (2021) ‘A multi-model based microservices
identification approach’, Journal of Systems Architecture,
Vol. 118, p.102200.

Daoud, M., Mezouari, A. E., Faci, N., Benslimane, D., Maamar, Z.
and Fazziki, A.E. (2020) ‘Automatic microservices identification
from a set of business processes’, Smart Applications and
Data Analysis: Third International Conference, SADASC 2020,
Proceedings, 25–26 June, Springer International Publishing,
Marrakesh, Morocco, Vol. 3, pp.299–315.

De Alwis, A.A.C., Barros, A., Polyvyanyy, A. and Fidge, C. (2018)
‘Function-splitting heuristics for discovery of microservices
in enterprise systems’, Service-Oriented Computing: 16th
International Conference, ICSOC 2018, Proceedings,
12–15 November, Springer International Publishing, Hangzhou,
China, Vol. 16, pp.37–53.

Di Francesco, P., Lago, P. and Malavolta, I. (2018) ‘Migrating
towards microservice architectures: an industrial survey’, 2018
IEEE International Conference on Software Architecture (ICSA),
April, IEEE, p.2909.

Djogic, E., Ribic, S. and Donko, D. (2018) ‘Monolithic to
microservices redesign of event driven integration platform’,
2018 41st International Convention on Information and
Communication Technology, Electronics and Microelectronics
(MIPRO), May, IEEE, pp.1411–1414.

Escobar, D., Cárdenas, D., Amarillo, R., Castro, E., Garcés, K.,
Parra, C. and Casallas, R. (2016) ‘Towards the understanding
and evolution of monolithic applications as microservices’, 2016
XLII Latin American Computing Conference (CLEI), October,
IEEE, pp.1–11.

Estañol, M. (2016) Artifact-centric Business Process Models in UML:
Specification and Reasoning, Montserrat Estañol supervised by
Professor Ernest Teniente Universitat Politècnica de Catalunya,
Barcelona, Spain.

Gysel, M., Kölbener, L., Giersche, W. and Zimmermann, O.
(2016) ‘Service cutter: a systematic approach to service
decomposition’, Service-Oriented and Cloud Computing:
5th IFIP WG 2.14 European Conference, ESOCC 2016,
Proceedings, 5–7 September, Springer International Publishing,
Vienna, Austria, Vol. 5, pp.185–200.

Indrasiri, K. and Siriwardena, P. (2018) Microservices for the
Enterprise, pp.143–148, Apress, Berkeley.

Josélyne, M.I., Tuheirwe-Mukasa, D., Kanagwa, B. and
Balikuddembe, J. (2018) ‘Partitioning microservices: a domain
engineering approach’, Proceedings of the 2018 International
Conference on Software Engineering in Africa, May, pp.43–49.

Levcovitz, A., Terra, R. and Valente, M.T. (2016) Towards
a Technique for Extracting Microservices from Monolithic
Enterprise Systems, arXiv preprint arXiv:1605.03175.

Likas, A., Vlassis, N. and Verbeek, J.J. (2003) ‘The global k-means
clustering algorithm’, Pattern Recognition, Vol. 36, No. 2,
pp.451–461.

Mazlami, G., Cito, J. and Leitner, P. (2017) ‘Extraction of
microservices from monolithic software architectures’, 2017
IEEE International Conference on Web Services (ICWS), June,
IEEE, pp.524–531.

Ponce, F., Márquez, G. and Astudillo, H. (2019) ‘Migrating from
monolithic architecture to microservices: a rapid review’, 2019
38th International Conference of the Chilean Computer Science
Society (SCCC), November, IEEE, pp.1–7.



198 M. Saidi et al.

Richards, M. (2015) Software Architecture Patterns, Vol. 4, O’Reilly
Media, Incorporated, No. 1005 Gravenstein Highway North,
Sebastopol, CA – 95472, USA.

Romani, Y., Tibermacine, O. and Tibermacine, C. (2022) ‘Towards
migrating legacy software systems to microservice-based
architectures: a data-centric process for microservice
identification’, 2022 IEEE 19th International Conference on
Software Architecture Companion (ICSA-C), March, IEEE,
pp.15–19.

Rosa, M.L., Aalst, W.M.V.D., Dumas, M. and Milani, F.P.
(2017) ‘Business process variability modeling: a survey’, ACM
Computing Surveys (CSUR), Vol. 50, No. 1, pp.1–45.

Saidi, M., Daoud, M., Tissaoui, A., Sabri, A., Benslimane, D. and
Faiz, S. (2021a) ‘Automatic microservices identification from
association rules of business process’, International Conference
on Intelligent Systems Design and Applications, December,
Springer International Publishing, Cham, pp.476–487.

Saidi, M., Tissaoui, A., Benslimane, D. and Faiz, S. (2021b)
‘Automatic microservices identification across structural
dependency’, International Conference on Hybrid Intelligent
Systems, December, Springer International Publishing, Cham,
pp.386–395.

Saidi, M., Tissaoui, A. and Faiz, S. (2022) ‘From a monolith to
a microservices architecture based dependencies’, International
Conference on Intelligent Systems Design and Applications,
December, Springer Nature Switzerland, Cham, pp.34–44.

Sellami, K., Saied, M.A. and Ouni, A. (2022) ‘A hierarchical
dbscan method for extracting microservices from monolithic
applications’, Proceedings of the 26th International Conference
on Evaluation and Assessment in Software Engineering, June,
pp.201–210.

Tyszberowicz, S., Heinrich, R., Liu, B. and Liu, Z. (2018)
‘Identifying microservices using functional decomposition’,
Dependable Software Engineering. Theories, Tools, and
Applications: 4th International Symposium, SETTA 2018,
Proceedings, 4–6 September, Springer International Publishing,
Beijing, China, Vol. 4, pp.50–65.


