Evaluation of exergy destructions of different refrigerants in a vaccine cooling system with artificial intelligence
by Elif Altıntaş Kahriman; Alişan Gönül; Ali Köse; İsmail Cem Parmaksızoğlu
International Journal of Exergy (IJEX), Vol. 44, No. 3/4, 2024

Abstract: Nowadays, low-temperature storage and distribution of many vaccines are as important as their production. In this study, the performance of a storage device operating in a vapour compression refrigeration cycle designed to provide low-temperature cooling between 201 K and 275 K using R134a, R1234yf, R502, and R717 fluids is evaluated by both thermodynamic and artificial neural network (ANN) methods. Levenberg-Marquardt, Bayesian regularisation, and scaled conjugate gradient algorithms are compared with thermodynamical calculations to predict the energy efficiency and exergy destruction of the cooling system. All the considered artificial intelligence algorithms are found to accurately predict the expected outputs with R2 values greater than 0.9.

Online publication date: Sat, 27-Jul-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com