

International Journal of Embedded Systems

ISSN online: 1741-1076 - ISSN print: 1741-1068
https://www.inderscience.com/ijes

Call-site tree and its application in function inlining

Arthur Ning-Chih Yang, Shih-Kun Huang, Wuu Yang

DOI: 10.1504/IJES.2024.10064933

Article History:
Received: 04 July 2023
Last revised: 06 October 2023
Accepted: 16 February 2024
Published online: 30 July 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijes
https://dx.doi.org/10.1504/IJES.2024.10064933
http://www.tcpdf.org

Int. J. Embedded Systems, Vol. 17, No. 5, 2024 1

Call-site tree and its application in function inlining

Arthur Ning-Chih Yang, Shih-Kun Huang and Wuu Yang*
Department of Computer Science,
National Yang-Ming Chiao-Tung University,
Hsinchu, Taiwan
Email: goldloti2@gmail.com
Email: skhuang@cs.nycu.edu.tw
Email: wuuyang@cs.nycu.edu.tw
*Corresponding author

Abstract: Traditionally, function invocation is represented as the (static) call graph or the
(dynamic) execution tree in compilers. We define the new call-site tree, in which two different
executions of a call-site (say α that is located within a function f) are represented by the
same node if and only if the calling chains from main to f in the two different executions
of α are identical. Function inlining is a very profitable optimisation that replaces a call-site
with the body of the called function. Intuitively, it is preferable to inline the call-sites that are
executed most often. Call-sites are suitable for function inlining because they allow to adjust the
execution counts of (new and existing) call-sites without re-profiling after a call-site is inlined.
We also propose analysis algorithms of the call-site tree and implement an inliner in LLVM.
The experimental results on SPEC INT 2006 are reported.

Keywords: inlining; call graph; call-site trees; compiler; execution tree; optimisation;
transformation; programming language; LLVM.

Reference to this paper should be made as follows: Yang, A.N-C., Huang, S-K. and Yang, W.
(2024) ‘Call-site tree and its application in function inlining’, Int. J. Embedded Systems, Vol. 17,
No. 5, pp.1–12.

Biographical notes: Arthur Ning-Chih Yang received his Master’s degree in Computer Science
and Information Engineering from the National Chiao Tung University. He current works in an
IC design house.

Shih-Kun Huang received his PhD in 1996 in Computer Science from the National Chiao Tung
University. He is a Professor at the National Yang Ming Chiao Tung University. His research
integrates software engineering and programming languages to study cyber security and software
attacks.

Wuu Yang received his PhD in Computer Science from the University of Wisconsin at Madison
in 1990. He has been a Professor in the National Chiao-Tung University since 1992. His
research interests include systems software for embedded systems, programming languages and
compilers, and attribute grammars.

called the call-site trees, which is a nice balance between
tree sizes and the representation capability. In the call-site
tree, two different executions of a call-site (say α that is
located within a function f) are represented by the same
node if and only if the calling chains from main to f in the
two different executions of α are identical. We also propose
analysis algorithms of the call-site tree and demonstrate its
application in function inlining.

Inlining replaces a call-site with the body of the function
(LLVM, 2020a, 2020b). Inlining is one of the fundamental
optimisations used in a compiler1 (Baev, 2015; Calder and
Grunwald, 1994). Many other optimisation algorithms start
from the results of inlining some call-sites. Advantages of
inlining include

1 Introduction

Traditionally, function invocation in a program is
represented as the (static) call graph (Ryder, 1979), in
which each node represents a function, not a call-site.The
call graph is too small to distinguish different call-sites.
Some compiler optimisations may perform different
transformations to different call-sites of the same function.
Obviously, the call graph is not useful in this case. On the
other hand, the (dynamic) execution tree (see Figure 6), in
which each node represents an invocation of a function,
is too big, especially for deep recursive programs, for
compiler optimisation. When we perform function inlining,
neither the call graph nor the execution tree is suitable for
our purpose. Therefore, we define a new data structure,

Copyright © The Author(s) 2024. Published by Inderscience Publishers Ltd. This is an Open Access Article distributed under
the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

2 A.N-C. Yang et al.

• Avoid calling overhead such as allocation of stack
frames and the jump instructions.

• Enlarge the body of procedures. Larger procedures
make many compiler optimisations, such as constant
propagation (for arguments that are constants), copy
propagation (for call-by-value arguments that are not
modified in the function), dead code elimination,
instruction scheduling, etc. easier and more effective.

• Inlining helps with register allocation due to avoiding
jump instructions. The compiler hence can allocate
registers more effectively.

• There is no need to jump to and from the function
body. This helps instruction and data cache
performance.

• Modern processors execute instructions faster than
loading data from memory. Due to the avoidance of
jumps, prefetch can be issued more effectively. The
first load in a function cannot be prefetched; however,
that load can be prefetched if the function is inlined.

On the other hand, inlining may cause code size explosion.
This may increase page faults and cache misses.

LLVM also provides an inlining facility. The facility
makes use of various heuristics in making inlining
decisions. In contrast, our inliner is based on the execution
counts of the call-sites (and other information about
programs). When a call-site is inlined, new call-sites may
be created and the execution counts of existing call-sites
may change. Updating execution counts by re-profiling
makes inlining very slow. Therefore, we design the call-site
tree. With call-site trees, no re-profiling is needed. The
characteristic of our work include:

• Profiling is performed only once. Our algorithms can
automatically infer the execution counts of the new
call-sites that are created due to previous inlining and
adjust the counts of existing call-sites.

• We develop new analysis techniques that can estimate
the possible execution counts of all call-sites and all
functions. We setup equations for the execution
counts. These equations for non-recursive programs
can be solved with existing mathematical techniques.
However, solving the equations for recursive
programs requires advanced mathematical techniques.
Investigating these advanced mathematical techniques
is left as future work.

The rest of this paper is organised as follows: Section 2
presents the background of this work. Section 3 presents
the construction of the call-site tree, the algorithm for
analysing the call-site tree, and the implementation of the
inliner. Section 4 shows the analysis methods that determine
the size of the call-site trees and the possible execution
counts of call-sites. Section 5 shows the experiment results.
Section 6 concludes this paper.

2 Background

2.1 Motivation

Profile information is very useful for effective inlining
(Baev, 2015). But exactly what profile information is
needed? This depends on the objective of inlining. In
this paper, the objective is to reduce execution time. A
reasonable approach is to inline the call-sites that are
executed most often. Therefore, the execution counts are the
profile information used in this paper.

When a call-site is inlined, call-sites and execution
counts may change. Hence, profiling may need to be
performed again and again. Repeated profiling is a bad
idea. In this paper, we propose the call-site tree on which
execution counts may be updated without re-profiling. To
collect execution counts, it is natural to keep a counter at
each call-site.

Example 2.1: Apply simple profiling to the program in
Figure 1. Assume the β call-site is executed once, the γ
call-site is executed once, the δ call-site is executed 65
times, the ω call-site is executed twice, the ϕ call-site
is executed twice, the ξ call-site is executed 16 times in
a particular run. We therefore choose the most executed
call-site, which is δ, to inline. It is straightforward to find
the call-site with the highest counts. However, the question
is to find the most executed call-site after inlining without
profiling again. In the above example, after the δ call-site
is inlined, new call-sites are created. The new program is
shown in Figure 2.

We want to know how often the new call-sites (δ′, ω′,
ϕ′, and ξ′) are executed with the same input data. We
need more detailed trace information to answer the above
question. We use the execution tree in Figure 6, which
is built from the trace of an execution of the program
in Figure 5. The call-site tree is a run-time expansion of
the traditional call graph used in traditional compilers. A
downside of the execution tree is it is too big, especially
for recursive programs. In order to reduce the size of the
execution tree, we may condense the execution tree by
merging certain nodes.

2.2 Related works

Most languages and compilers provide some kinds of
inlining. Inlining is similar to macro expansion in C
(Kernighan and Ritchie, 1988; Chang et al., 1992).
However, macro substitution is mandatory. In contrast,
inlining is usually only a hint to clang (GCC, 1987; Clang,
2020). Inlining requests may be ignored. Inlining in C is
made complicated due to the static declaration. On the
other hand, inlining in C++ is simpler (Clang, 2020; Chang
and Hwu, 1989).

There is a built-in inliner in the LLVM framework. That
inliner makes use of static information of the program and
various heuristics (Zhongxiao, 2023; Larin et al., 2017). In
contrast, the inliner in this paper makes use of (dynamic)
execution counts.

Call-site tree and its application in function inlining 3

Figure 1 An example program (see online version for colours)

g(){ ... }
f(){

for (i = 1; i < m; i ++) {
if (r) { f(); }; /* δ */

}
if (s) { f(); } /* ω */
if (t) { f(); } /* ϕ */
if (u) { g(); } /* ξ */

}
main(){

if (p) { f(); } /* β */
if (q) { f(); } /* γ */

}

Figure 2 Inlined Figure 1 (see online version for colours)

f(){
for (i = 1; i < m; i ++) {

if (r) {
for (j = 1; j < m; j ++) {

if (r) { f(); }; /* δ′ */
}
if (s) { f(); } /* ω′ */
if (t) { f(); } /* ϕ′ */
if (u) { g(); } /* ξ′ */

}
}
if (s) { f(); } /* ω */
if (t) { f(); } /* ϕ */
if (u) { g(); } /* ξ */

}

Inlining a call-site may create new call-sites. Our inliner
may further inline these new call-sites if the cost is
worthwhile. On the other hand, LLVM inliner will never
attempt inlining new call-sites.2 For example, Figure 3
shows three versions of the factorial program. foo1 (upper
left part) is the original program. foo2 (lower left part)
is the program resulting from one inlining operation. foo3
(right part) is the program resulting from two inlining
operations. Note that the recursive call to foo2, which was
created in the previous round of inlining, could be inlined
with our algorithm. Note that the execution counts of foo2
is a half of that of foo1 and the execution counts of foo3
is a half of that of foo2 (our inliner works on LLVM IR,
not C code. But it is easier to demonstrate the inliner with
C code).

Inlining is a basic optimisation in a compiler. Compiler
optimisation is closely related to the performance of
software. Due to the recent advancement of artificial
intelligence, AI techniques have been applied to
compilation. Liu et al. (2021) makes use of machine
learning techniques at the source code level in order to
predict the performance of software. Mature compilation
framework incorporates many phases of optimisations. The
combinations of optimisations are too numerous to explore
exhaustively. Finding a good sequence of optimisation

has been studied by several researchers (You and Su,
2022). Most practical programs are written in a high-level
language, such as C or C++. The quality, such as safety
and reliability, of programs is an important issue. Software
tools, such as Chen et al. (2023), examine the source code
and point out the weaknesses of the software.

3 Design and implementation

Figure 4 is the overall organisation of our inliner. Our
inlining system consists of the following three steps:

Step 1: generate the trace

The profiling pass inserts trace code into the program
before each call-site. When the program runs, the trace
code will print the name of the call-site (not the name of
the function) before executing a call-site. When the call
returns, it will print a ‘ret’ string. In the sample trace in
Figure 5, there are 23 occurrences of call-sites and 23 ret
in this trace.

Observation: A half of the trace items are the ret items. The
other half are the call-site items.

Step 2: analyse the trace

In order to analyse the trace, we first build the execution
tree from the trace. Because the execution tree is quite big,
we transform it to the call-site tree. We simulate the inlining
operations on the call-site tree. Based on the default or a
user-supplied priority formula, we may decide the call-sites
that will be inlined and the order of inlining. Usually the
priority formula is defined in terms of the execution counts
of the call-sites. Other factors, such as function sizes, may
be considered as well. Our inlining system provides an
interface for the user to supply his own priority formula.

Step 2.1: build the call-site tree from the trace

Function calls and returns follow the last-in-first-out stack
behaviour. In the beginning, we create a node representing
the operating system calling the main procedure of the
user program. Make this node the current node. Then we
examine the trace items one by one.

• For a call-site item, create a node as a child of the
current node. This new node represents an occurrence
of the call-site or the function that is called at the
call-site. Make the new node the current node.

• For a ret item, make the parent of the current node as
the new current node.

When all items are processed, the execution tree is built,
and the main node is the root of the call-site tree. For the
trace in Figure 5, we will create the call-site tree shown in
Figure 6. A node in the call-site tree denotes an occurrence

4 A.N-C. Yang et al.

of a call-site. Alternatively, a node in the call-site tree may
be viewed as an occurrence of the function being called at
that call-site.

Figure 3 Three factorial programs (see online version
for colours)

Figure 4 Overall organisation of the inliner system
(see online version for colours)

Figure 5 A sample trace produced by profiling

Step 2.2: condense the execution tree

The execution tree is unnecessarily large for our inlining
purpose. We will merge certain nodes. We may image that
each node in the execution tree carries an execution count
whose value is one initially.

Starting from the main node, we perform a depth-first
traversal. Upon visiting a node n, if n has two or more
child nodes that denote the same call-site, such as the two
‘ϵ : call a’ nodes in Figure 6, these child nodes will be

merged into a single call-site node. The execution count of
the merged node is the sum of the execution counts of the
child nodes that are merged together. The children of the
original sibling nodes will become the children of the new
node.

Figure 6 The execution tree (see online version for colours)

main

ε : call a

α : call p
σ : call t

δ : call q

α : call p
δ : call q

µ : call s
α : call p

α : call p

β : call p

δ : call q

σ : call t

µ : call s

φ : call u

ε : call a

α : call p
φ : call u

δ : call q
α : call p

ω : call a α : call p
φ : call u

δ : call q

Notes: The main node denotes the invocation of main
by the operating system.

After the two ϵ nodes are merged, there will be six α
siblings. After the six α siblings are merged, there will be
three δ siblings. The three δ siblings will be merged as well.

Note that the remaining two ‘δ : call q’ nodes cannot
be merged because they are not siblings. There is no more
merging. The result in Figure 7 is called the call-site tree.
In Figure 7, the execution counts are added to the call-sites
explicitly.

Observation: The sum of the execution counts in all the
nodes in the call-site tree is equal to the number of nodes
in the execution tree.

There is a significant difference between the upper limits of
the sizes of the execution trees and the call-site trees. For
a set of non-recursive functions, there is an upper limit on
the size of the call-site tree while the execution tree could
grow limitlessly.

Step 2.3: decide the call-sites that will be inlined and the
order of inlining

We assign a priority to each call-site. The call-site with the
highest priority will be inlined. After a call-site is inlined,

Call-site tree and its application in function inlining 5

new call-sites may be created, and the priorities of some
existing call-sites may change.

Figure 7 The tree resulting from merging the two ϵ, three δ,
and six α call-site nodes (see online version
for colours)

main

ε : call a/2

α : call p/6

σ : call t/1

δ : call q/3

µ : call s/1

φ : call u/1

β : call p/1

δ : call q/1

σ : call t/1

µ : call s/1

φ : call u/1

ω : call a/1 α : call p/1
φ : call u/1

δ : call q/1

Notes: Since the remaining nodes cannot be merged,
this tree is called the call-site tree. Note that an
execution count is attached to each node.

The call-site tree makes it easy to find the call-site with
the highest priority after a call-site is inlined. There is
no need to re-profile the user program. The priority of
a call-site is usually based on the execution count of the
call-site because it is reasonable to inline the call-sites that
are executed frequently. The execution count of a call-site
is the sum of the execution counts of all occurrences of
the call-site in the tree. The (estimated) size of the function
may also be considered in deciding the priority. A user
may supply his own priority formula that will be loaded
into the inlining system. User-supplied priority formula are
implemented as a dynamic linking library that are accessed
with the dlopen call (Linux, 2021). Examples of the
priority formula include priority =def ExecutionCount,
priority =def

ExecutionCount
FunctionSize , etc. A user may also specify

the number of call-sites to be inlined in the library.
Note that after a call-site is inlined, new call-sites may

be created and the execution counts of certain call-sites may
change. The size of the function that contains the inlined
call-site may also grow.

After a call-site is inlined, our algorithm will modify
the call-site tree and compute these changes on the call-site
tree. The one with the highest priority is selected as the
candidate of inlining in the next round.

We may simulate the inlining operation on the call-site
tree. Assume a call-site ‘α : call p’ is inlined. For every
occurrence x of the α call-site in the call-site tree, we
remove the node x and all children of x will become the
children of x’s parent and these call-sites must be given
new names, such as σ′, δ′, µ′, or ϕ′ in Figure 8.

For example, there are two occurrences of the α call-site
in Figure 7. After the α call-sites is inlined, the call-site
tree is shown in Figure 8.

Figure 8 The call-site tree after inlining the ‘α : call p’
call-site in procedure a in Figure 7
(see online version for colours)

main

ε : call a/2

σ′
: call t/1

δ′ : call q/3

µ′
: call s/1

φ′
: call u/1

β : call p/1

δ : call q/1

σ : call t/1

µ : call s/1

φ : call u/1ω : call a/1
φ′

: call u/1

δ′ : call q/1

We repeat the above process for the next call-site to
be inlined or until the (default or user-specified) cut-off
condition is met. The output of this 2nd step is an ordered
list of call-sites according to the computed priorities.

The inlining algorithm takes time proportional to the
number of nodes in the call-site tree since it performs a
depth-first traversal of the tree.

Algorithm for finding the call-sites to be inlined

begin
traverse the call-site tree and build a linked list for each
call-site;
for each linked list do
sum up nodes’ execution counts in this linked list;
compute priority of the call-site for the linked list;

end;
repeat
select the call-site, say α, with the highest priority;
modify the call-site tree by deleting all occurrences x of the
α call-site and attaching x’s children to x’s parent;
rename the call-sites that have been moved and create the
associated linked lists for the renamed call-sites;
calculate the priorities of these new call-sites;
modify the priorities of existing call-sites;

until the cut-off condition is met;
end;

Step 3: Inline the user program with an inlining pass in
LLVM

The actual inlining is done on the LLVM IR with an LLVM
pass. This pass modifies the user program (in the LLVM IR
format) by inlining the call-sites selected in Step 2.

6 A.N-C. Yang et al.

Figure 9 The largest call-site tree with main and three other functions and no recursive calls (see online version for colours)

4 Algebraic properties of the call-site trees

In this section, we will discuss some algebraic properties of
the call-site trees. Subsection 4.1 discusses the expansion
property. Subsection 4.2 calculates the size of the call-site
tree. Subsection 4.3 presents a method for finding the
possible execution counts of call-sites and functions.

4.1 The expansion property

Note that every node in the call-site tree denotes a call-site.
Consider an edge from node n1 to node n2 in the call-site
tree. Let n1 denotes the call-site ‘α : call p’ and n2 denotes
the call-site ‘β : call q’. Due to the construction of the
call-site tree from the trace, the call-site ‘β’ must be inside
the procedure p. Therefore, we may consider node n1

as an instance of procedure p, node n2 as an instance
of procedure q, and the edge n1 → n2 as an invocation
p calls q. We can write this in a formal way.

We may define a homomorphism h from every call-site
tree to the call graph of the user program as follows:

Every node n in the call-site tree may be written as an
instance of a call-site ‘α : call p’. Define h(n) = p. We can
verify that, for every edge n1 → n2 in the call-site tree,
h(n1 → n2) = h(n1) → h(n2) (note that h(n1) → h(n2) is
an edge in the call graph).

The existence of the homomorphism between a call-site
tree and the call graph is called the expansion property.

4.2 How large is the call-site tree?

Consider a program that consists of main, f1, f2, ..., fn
functions. If there are deep (direct or indirect) recursive
functions, the call-site tree could be arbitrarily big. So
assume there are no (direct or indirect) recursive functions.
In this case the call-site tree can still be as big as you wish.
For example, consider function f1 calls function f2 1,000
times (that is, there are 1,000 call-sites in the program).
The call-site tree could contain 1,000 or more nodes. It is
still quite large. Therefore, we further assume that there
is a constant k such that any function can call any other
functions at most k times (i.e., at most k call-sites).

Under these restrictions, how large could a call-site tree
be?

We can find there are repetitions of patterns in the
call-site trees. Consider an example in which there are
four functions: main, f1, f2, and f3. Assume there are no
recursive functions and each function can call any other
function at most k (k = 3 in this example) times. The largest
call-site tree for this example is shown in Figure 9:

1 there are k copies of the largest call-site tree with
three functions f1, f2, and f3

2 there are k copies of the largest call-site tree with two
functions f2, and f3

3 there are k copies of the largest call-site tree with one
function f3.

We may setup the following equations: Let f(n) denote
the size of the largest call-site tree with main and n other
functions. Then

f(0) = 1 (only the main function)

f(n) = kf(n− 1) + kf(n− 2) + kf(n− 3) + ...

+ kf(1) + kf(0) + 1

The solution of the the above equation is f(n) = (k + 1)n.

4.3 Estimating the set of possible execution counts of a
call-site

In this section, we will estimate the possible execution
counts of each call-site. It is obviously impossible to decide
the exact execution count of a call-site in general. However,
we develop a new analysis method that can determinate
the set of possible execution counts of each call-site more
exactly.

A trivial and useless estimate of the set of possible
execution counts of a call-site is {0, 1, 2, ...} (i.e., all
non-negative integers). However, our method can find more
exact estimates than this trivial one.

Specifically, let α be a call-site located within a function
f . We define ℵ(α), µ(f), and σf [α] as follows.

1 Let ℵ(α) be the set of possible execution counts of α
when the whole program is executed once.

2 Let µ(f) be the set of possible execution counts of
function f when the whole program is executed once.

Call-site tree and its application in function inlining 7

3 Let σf [α] be the set of possible execution counts of α
when function f is executed once.

There could be different execution counts for the same
call-site in different runs of the program. Furthermore, in
theory, it is impossible to determine the exact execution
counts of a call-site without executing the program.
Therefore, the possible execution counts of a call-site is a
set of non-negative integers.

In this section, we perform the following two steps
to estimate the possible execution counts ℵ(α) for all
call-sites.

1 For every call-site α (let f be the function containing
α), we first calculate σf [α] in a syntax-directed
computation based on the syntax of the shrinked
function fα (which will be defined later).

2 Then we will compute µ(f) from various σg[β] and
compute ℵ(α) from µ(f) and σf [α].

In this section we will use the following operations. Let s
and t be (possibly empty) sets of non-negative integers.

• Define s⊕ t =def {a+ b | a ∈ s ∧ b ∈ t}.

• Define s0 =def {0}. s1 =def s.

• Define sh =def s⊕ s⊕ ...⊕ s⊕ s = s⊕ sh−1 (for
h > 1).

• Define s∗ =def {0} ∪ s ∪ s⊕ s ∪ s⊕ s⊕ s ∪ ... =
s0 ∪ s1 ∪ s2 ∪ ... (closure).

Figure 10 The shrinked function fδ for the example in
Figure 1

f(){
S1: for (i = 1; i < m; i ++) {
S2: if (r) {

f(); }; /* δ */
}

}
Notes: Note that the statement labels S1 and S2 are

added for easy reference only. From the shrinked
function fδ , we wish to compute σδ[δ], σS2[δ],
σS1[δ], σf [δ] in a syntax-directed manner.

The following properties of ⊕ are obvious:

1 s⊕ t = t⊕ s

2 s⊕ ∅ = ∅

3 s⊕ {0} = s

4 s⊕ (t ∪ u) = (s⊕ t) ∪ (s⊕ u)

5 s⊕ (t ∩ u) ⊆ (s⊕ t) ∩ (s⊕ u)

6 if |s| = 1 then |s⊕ t| = |t|.

For each call-site α located inside function f , we first create
the corresponding shrinked function fα by removing all
declarations and statements in f except those that enclose

the call-site α. For example, the shrinked function fδ for the
δ call-site in the example in Figure 1 is shown in Figure 10.

From the shrinked function fδ , we wish to compute
σf [δ] with the help of σδ[δ], σS2[δ], and σS1[δ] (each of
which is a set of non-negative integers) in a syntax-directed
manner.

σf [δ] is the set of possible execution counts of the
call-site δ if function f is executed exactly once. Similarly,
σS1[δ] is the set of possible execution counts of the call-site
δ if the for-loop S1 is executed exactly once. σS2[δ] is the
set of possible execution counts of the call-site δ if the
if-statement S2 is executed exactly once.

Of course, σδ[δ] = {1}.
We consider only a simplified language which contains

block statements, call-statements, if-statements, for-loops,
and while-loops. There are no goto nor exceptions. We want
to estimate the possible execution counts of each call-site.

1 S ::= aStatement

σS [α] =def {0} if the call-site α is not located within
the statement S.

2 S ::= α: call foo()

σS [α] =def {1}. Here S is the call-site α.

3 S ::= begin T end

σS [α] =def σT [α]

4 S ::= if Q then T else skip

σS [α] =def σT [α] if the predicate Q is true according
to constant folding,

else {0} if the predicate Q is false according to
constant folding,

else σT [α] ∪ {0}

5 S ::= if Q then skip else T

Similar to if Q then T but in opposite way.

6 S ::= for (i = e1; i < e2; i = i + e3) begin T end

σS [α] =def

σT [α]⊕ σT [α]⊕ σT [α]⊕ ...⊕ σT [α] ≡ σT [α]
k

if the compiler can determine the number of iterations
is k with constant folding,

else {0} ∪ σT [α] ∪ σT [α]⊕ σT [α] ∪ σT [α]⊕ σT [α]⊕
σT [α] ∪ ... ≡ σT [α]

∗

7 S ::= while (Q) begin T end

Similar to the above for-loops.

8 S ::= function ID (P) begin T end

σS [α] =def σT [α]; we use σID[α] to denote the set
σS [α] in this case.

According to the above syntax-directed calculation on the
shrinked function, we can determine the set of possible

8 A.N-C. Yang et al.

execution counts of a call-site located inside a function
assuming the function is executed exactly once.

Suppose the whole program contains functions main,
f1, f2, ..., fk. For each function f we define µ(f) as the
set of possible execution counts of function f . Because the
main function is invoked exactly once, we have
µ(main) = {1} (1)

The possible execution counts of a call-site α located inside
function f is

ℵ(α) =def

∪
{σf [α]

h|h ∈ µ(f)} (2)

Furthermore, we can setup an equation for each µ(f) as
follows: let β1, β2, ..., βp be all the call-sites that call
function f . Then
µ(f) = ℵ(β1)⊕ ℵ(β2)⊕ ...⊕ ℵ(βp) (3)

Finally we may attempt to solve the above simultaneous
equations (1), (2) and (3).

In summary, we wish to find ℵ(α) and µ(f) from
various σf [β], for each call-site α and each function f in
the program.

Example 4.1: Consider the example program in Figure 11.
The possible execution counts of the δ call-site are
calculated as follows:

σS4[δ] = {1}.
σS3[δ] = σS4[δ]⊕ σS4[δ]⊕ σS4[δ] = {3}.
σS2[δ] = {0} ∪ σS3[δ] = {0, 3}.
σf [δ] =def σS2[δ] = {0, 3}.

Note that the ω call-site will not affect σf [δ].
The possible execution counts of the ω call-site are

calculated as follows:

σS6[ω] = {1}.
σS5[ω] = {0} ∪ σS6[ω] = {0, 1}.
σf [ω] =def σS5[ω] = {0, 1}.

The possible execution counts of the ζ call-site are
calculated as follows:

σSa[ζ] = {1}.
σS9[ζ] = {0} ∪ σSa[ζ] = {0, 1}.
σS8[ζ] = σS9[ζ]⊕ σS9[ζ] = {0, 1, 2}.
σmain[ζ] =def σS8[ζ] = {0, 1, 2}.

Next we may setup the following equations:
µ(main) = {1} (4)

µ(f) = ℵ(ζ) (5)

µ(g) = ℵ(δ)⊕ ℵ(ω) (6)

ℵ(δ) =def

∪
{σf [δ]

h|h ∈ µ(f)} (7)

ℵ(ω) =def

∪
{σf [ω]

h|h ∈ µ(f)} (8)

ℵ(ζ) =def

∪
{σmain[ζ]

h|h ∈ µ(main)} (9)

Figure 11 Program for Example 4.1

S1: f(){
S2: if (r)
S3: for (i = 1; i < 4; i ++)
S4: g(); /* δ */
S5: if (s)
S6: g(); /* ω */

}
g() { ... }

S7: main(){
S8: for (j = 1; j < 3; j ++)
S9: if (t)
Sa: f(); /* ζ */

}

Therefore,

µ(main) = {1}.
ℵ(ζ) = σmain[ζ]

1 (because µ(main) = {1})
= {0, 1, 2}.
µ(f) = ℵ(ζ) = {0, 1, 2}.
ℵ(δ) = σf [δ]

0 ∪ σf [δ]
1 ∪ σf [δ]

2 = {0} ∪ {0, 3}
∪{0, 3, 6} = {0, 3, 6}.
ℵ(ω) = σf [ω]

0 ∪ σf [ω]
1 ∪ σf [ω]

2 = {0} ∪ {0, 1}
∪{0, 1, 2} = {0, 1, 2}.
µ(g) = ℵ(δ)⊕ ℵ(ω) = {0, 3, 6} ⊕ {0, 1, 2}
= {0, 1, 2, 3, 4, 5, 6, 7, 8}.

In the above example,

µ(g) = {0, 1, 2, 3, 4, 5, 6, 7, 8}

This means that, if the main procedure is executed once,
the g procedure may be executed 0, 1, 2, 3, 4, 5, 6, 7, or 8
times. There are no other possibilities.

Similarly,

ℵ(δ) = {0, 3, 6}

this means that, if the main procedure is executed once,
the δ call-site may be executed 0, 3, or 6 times. There are
no other possibilities.

Examples 4.1 shows only programs without recursive
calls. In this case, the equations can be solved easily.

For programs with recursive calls, the equations become
recursive. We could use the iterative solution: starting from
the initial condition, we repeatedly calculate the values
of various variables until a stable solution is found. A
closed-form solution might need advanced mathematical
techniques. We will leave its solution as future work.

For example, suppose a function f contains a call-site α
that calls f itself. Then equation (2) will become

ℵ(α) =def

∪
{σf [α]

h|h ∈ µ(f)} (10)

and equation (3) will become

µ(f) = ℵ(α)⊕ ... (11)

Call-site tree and its application in function inlining 9

Figure 12 Percentage of call-sites (horizontal axis) vs. percentage of invocations (vertical axis) (see online version for colours)

These are recursive equations involving sets of
non-negative integers. Their solutions will be left as future
work.

Note σS [α] ⊆ {0} ∪N because every call-site α may
be executed 0, 1, 2, ... times. We wish to find a more
accurate (i.e., smaller) estimate for σS [α]. If better constant
propagation can infer values of expressions more accurately
during program analysis, it is possible to find more accurate
estimate to each σS [α]. Pursuing in this direction requires
excellent constant propagation capability. We will leave it
as future study.

Additionally, a programmer can specify the ‘range of the
value using metadata’ (LLVM, 2023; Finkel, 2016; Lattner,
2010). With this range metadata we can compute ℵ(α) more
precisely.

Table 1 The total number of call-sites in a benchmark
(#call-sites) and the total number of invocations of the
functions in the benchmark (#invocations)

#call-sites #invocations

bzip2 146 590,645
gcc 13,185 90,167,491
h264ref 549 1,055,971,530
hmmer 190 5,242,553
libquantum 197 639,878
mcf 25 87,399,944
sjen 286 143,196,950

5 Experimental results

We implemented the whole inlining system. In the
experiment environment, a PC with Intel(R) Core(TM)
i5-7400 CPU @ 3.00 GHz (x86-64) with 16 GB memory,
running Ubuntu 20.04, LLVM 10.0, and clang in LLVM
10.0, is used. The seven benchmarks come from CINT2006
in SPEC CPU 2006 (Henning, 2006).

Execution counts of call-sites vary significantly. A very
large percentage of the total invocations are due to a
small percentage of the call-sites. Figure 12 shows the
percentage of call-sites (horizontal axis) and the percentage

of invocations (vertical axis). Figure 12 shows that for all
benchmarks, roughly 80% of the invocations are due to
20% of the call-sites.

We perform three analyses of the performance of the
call-site tree technique:

1 we measure the number of invocations that are
eliminated by the call-site-tree technique

2 we compare the numbers of eliminated invocations
with the Naïve inliner and with the call-site tree
technique

3 we compare the running time of the call-site-tree
inliner and the LLVM inliner.

5.1 The effect of the call-site-tree technique compared
with no inlining

One characteristic of the call-site-tree technique is that
call-sites that are created by previous inlining operations
may be inlined again as long as the new call sites have
high execution counts. We define NCS as the new call-sites
that are created due to previous inlining operations and are
inlined again.

Table 2 Column f is the ratio of the execution counts of NCS
(column c) divided by the total number of invocations of
the whole program (column e) and column g is the total
number of invocations of the 56 inlined call-sites
(column d) divided by column e

Benchmark b c d e f g

bzip2 0 0 580,520 590,645 0% 98.29%
gcc 11 3,727,636 32,112,216 90,167,491 4.13% 35.61%
h264ref 6 83,538,159 856,688,938 1,055,971,530 7.91% 81.13%
hmmer 8 1,630 5,241,992 5,242,553 0.03% 99.99%
libquantum 10 32,459 631,560 639,878 5.07% 98.70%
mcf 49 2,194,645 87,339,582 87,399,944 2.51% 99.93%
sjeng 15 12,429,470 102,019,934 143,196,950 8.68% 71.24%

First it is obvious that the more call-sites are inlined,
the more invocations are eliminated. We may inline all
call-sites repeatedly until there is no invocation left at

10 A.N-C. Yang et al.

run time. Such an approach is quite useless. For this
experiment, we will inline 56 call-sites that have the highest
execution counts using the call-site-tree technique. The
result is shown in Table 2.

In Table 2, the leftmost column lists the seven
benchmarks.

Column b lists the number of NCS among the 56 inlined
call-sites. Note that LLVM inliner will not inline NCS.
Instead it will inliner other call-sites with few execution
counts.

Column c lists the number of invocations due to NCS
among the 56 inlined call-sites.

Column d lists the number of invocations due to the 56
inlined call-sites.

Column e lists the number of invocations of the whole
program in the profile run.

Column f lists the ratios of column c divided by column
e. Column f should be compared with column b divided by
56. For example, consider the gcc benchmark. NCS = 11.
However, 11/56 = 19.64% which is larger than 4.13%. This
observation, that is, column c/56 > column f, holds for all
benchmarks. It means that the first few non-NCS call-sites
among the 56 inlined call-sites account for a large portion
of the invocations of the 56 inlined call-sites.

Column g lists the ratios of column d divided by column
e. Column g, which ranges from 35% to 99%, shows the
percentage of invocations that will be eliminated if the 56
call-sites are inlined. Since all values in column g are quite
large, inlining 56 call-sites is sufficient to draw a reliable
conclusion because, according to our experiment, each of
the remaining call-sites only account for less than 0.28%
of the total invocations and real inliners probably will not
inline them.

5.2 Comparison with the Naïve dynamic inlining
technique

The call-site-tree technique will inline NCS (as long as their
execution counts are high enough) while LLVM inliner,
which is a static tool, will never attempt to inline NCS. We
will examine the benefit of this feature.

Table 3 The percentage of invocations eliminated with the
call-site-tree technique

Benchmark b c d e f g

bzip2 492,072 492,072 0% 0 0 0%
gcc 27,156,150 27,713,772 2.05% 6 2,290,964 8.44%
h264ref 706,027,579 749,291,818 6.13% 6 83,538,159 11.83%
hmmer 5,259,303 5,260,783 0.03% 8 1,630 0.03%
libquantum 597,755 628,354 5.12% 1 30,925 5.17%
mcf 85,144,937 87,296,109 2.53% 33 2,151,172 2.53%
sjen 89,293,276 96,195,583 7.73% 6 8,778,036 9.83%
average 3.37% 5.40%

To measure the effect of the call-site-tree technique, we
distinguish two levels of the effect: one is the direct
elimination of the invocations due to the call-site-tree
technique; the other is the reduction of execution time

due to whatever optimisations the compiler applies to the
benchmarks together with inlining. These optimisations will
dilute the effect of the inlining operations. The latter effect
is significantly affected by many other factors, such as
whether the benchmarks admit other optimisations.

Table 4 Improvements when 4–56 call-sites are inlined

Improvements bzip gcc h264ref hmmer libquantum mcf sjeng

i4 1.0101 1.0011 1.0027 1.0000 1.0030 1.0419 1.0025
i8 1.0018 1.0058 1.0041 0.9979 1.0029 1.0204 1.0041
i12 1.0027 1.0058 1.0027 0.9889 0.9656 1.0225 0.9982
i16 1.0070 1.0045 1.0121 0.9929 0.9680 1.0355 0.9964
i20 1.0083 1.0066 1.0150 1.0001 0.9694 1.0269 0.9878
i24 1.0094 1.0089 1.0085 1.0058 0.9688 1.0278 1.0028
i28 1.0101 1.0077 1.0119 0.9837 1.0167 1.0237 1.0014
i32 1.0080 1.0078 1.0088 0.9835 1.0106 1.0253 0.9832
i36 1.0076 1.0078 1.0079 0.9931 1.0116 1.0232 0.9326
i40 1.0101 1.0073 1.0036 1.0303 0.9924 1.0205 0.9324
i44 1.0112 1.0062 1.0057 1.0285 0.9942 1.0248 0.8721
i48 1.0094 1.0071 1.0115 1.0332 0.9972 1.0222 0.8675
i52 1.0074 1.0066 1.0132 1.0260 0.9957 1.0208 0.8739
i56 1.0074 1.0059 1.0109 1.0296 0.9927 1.0202 0.8451
i4f 0.9865 1.0044 1.0032 0.9993 1.0014 1.0311 1.0001
i8f 0.9915 1.0033 1.0045 1.0033 0.9656 1.0261 1.0003
i12f 0.9889 1.0077 1.0031 1.0018 0.9665 1.0223 0.9863
i16f 1.0058 1.0002 1.0059 1.0102 0.9961 0.9911 0.9934
i20f 1.0055 1.0004 1.0131 1.0148 0.9961 0.9872 0.9956
i24f 1.0063 0.9947 0.9747 0.9987 0.9919 0.9844 0.9895
i28f 1.0093 0.9954 0.9825 1.0034 0.9934 0.9939 0.9956
i32f 1.0056 0.9997 1.0140 1.0120 0.9948 0.9843 0.9949
i36f 1.0058 0.9985 1.0136 1.0087 0.9925 0.9960 0.9935
i40f 1.0055 0.9964 1.0130 1.0132 0.9916 0.9919 0.9923
i44f 1.0078 0.9952 1.0127 1.0160 0.9946 0.9932 0.9929
i48f 1.0061 0.9897 1.0139 1.0117 0.9925 0.9871 0.9957
i52f 1.0088 0.9928 1.0028 1.0118 0.9889 0.9911 0.9884
i56f 1.0087 0.9940 1.0056 1.0151 1.0004 1.0111 1.0014

We will compare the call-site-tree technique with the Naïve
inlining technique. The Naïve inlining technique selects the
call-sites to be inlined purely based on the execution counts.
The Naïve technique will ignore NCS when selecting
call-sites to be inlined.

We show the number of invocations that are eliminated.
For each benchmark, we select 40 call-sites (that have the
highest execution counts) using the two techniques. The
result is shonw in Table 3. Column b is the sum of the
execution counts of the 40 call-sites (no NCS included)
that are selected by the Naïve technique in the respective
benchmark. This number is the number of invocations that
will be eliminated if the 40 call-sites are inlined. Column
c is the sum of the execution counts of the 40 call-sites
that are selected the call-site-tree technique. Column d is
the percentage of the invocations that are saved with the
call-site technique, that is (c− b)/b ∗ 100%. The average of
d is 3.37%.

Column e is the number of NCS among the 40 call-sites
in the respective benchmark. This number could be as small
as 0 (the bzip2 benchmark) and as large as 33 (the mcf
benchmark).

Call-site tree and its application in function inlining 11

Table 5 The number of call-sites and the average performance improvements at 70%, 80%, 90% invocation coverage (see online version
for colours)

Dataset 70% invocations 80% invocations 90% invocations
#call sites perf improvement #call sites perf improvement #call sites perf improvement

bzip2 26 1.0101 37 1.0094 48 1.0080
gcc 355 0.9850 635 0.9693 1,223 0.9400
h264ref 39 1.0042 55 1.0121 72 1.0105
hmmer 3 1.0011 3 1.0009 3 1.0024
libquantum 8 1.0026 11 1.0012 18 1.0087
mcf 1 1.0336 1 1.0360 1 1.0301
sjeng 43 0.8728 60 0.8429 83 0.8344

For bzip2, the same 40 call-sites are inlined in both
techniques. There are no NCS in the 40 call-sites. Hence,
there is no saving if we inlined only 40 call-sites. This
means that the call-site-tree technique did not inline any
NCS. On the other hand, for mcf, 33 call-sites among the
40 highest-count call-sites are NCS. This is because in
mcf, the first call-site accounts for 91% of all invocations,
then 8 more call-sites account for almost all the remaining
invocations. The remaining call-sites are executed only once
or twice. In the hmmer and sjeng benchmarks there are one
or two call-sites that are created by inlining another call-site
(call it δ) and the δ call-site itself is created by inlining yet
another call-site. This shows that the call-site-tree technique
is very good at discovering call-sites with high execution
counts.

Column f in Table 3 is the sum of the execution counts
of NCS. Column g, which is defined as f/b, is the ratio
of the execution counts of NCS and that of all the 40
inlined call-sites that have the highest execution counts. The
average of g is 5.40%. This average ratio can be roughly
interpreted as the call-site-tree technique requires 5.40%
fewer invocations than the Naïve technique.

5.3 Comparison with the static LLVM inliner

In our experiment, 4–56 call-sites are inlined. The
experimental configurations are named as i4, i4f, i8, i8f, ...,
i56, and 56f, where the number (e.g., 4) denotes the number
of call-sites that are inlined. A configuration name without
the f suffix implies that the priority of a call-site is simply
the execution count of the call-site. A configuration name
with the f suffix implies that the priority of a call-site is
the execution count of the call-site divided by the number
of LLVM IR instructions in the function that is inlined.
After inlining is performed, clang compiles the benchmarks
with the –O2 option. The benchmarks come with 1–11 test
datasets.

Table 4 shows the average performance improvements
of the benchmark when 4–56 call-sites that have the highest
execution counts are inlined.

Because inlining is always used with other
optimisations, we really want to compare the execution time
of case 1 (inlining is disabled but all other optimisations are
enabled) and case 2 (enable our inlining and all all other
optimisations). However, when other optimisations implied

by the –O2 option are enabled, they will automatically
perform inlining in LLVM. Therefore, the performance
improvements shown in Table 4 actually is the difference
between

1 our inliner + LLVM inliner + O2 optimisations

2 LLVM inliner + O2 optimisations.

The performance of our inliner for bzip, gcc, h264ref, and
mcf is always improved, though slightly (see i4, i8, i12, ...,
i56). For other benchmarks, the performance does not differ
much. The reason might be that the priority formula we use
is quite simple. In contrast, LLVM inliner uses sophisticated
cost estimation. Alternatively, we may say that with profile
information, a simple priority formula achieves similar or
better effect than the LLVM inliner, which is equipped with
mature, sophisticated cost estimation but without profile
information.

Inlining brings both positive and negative effects
to performance. When more than necessary inlining is
performed, performance might degrade.

Consider the gcc benchmark. If only 4, 8, or 12 call-sites
are inlined, the performance improvement is greater than
1. When 355 or more call-sites (equivalently, 2.7% of
call-sites or 70% or more coverage of invocations), the
performance improvement is less than 1 (see Table 5).
The reason is that when more than necessary call-sites are
inlined, the code size explosion reduces the performance.

Consider the sjeng benchmark. If only 4, 8, 24, or
28 call-sites are inlined, the performance improvement is
greater than 1. If 32 or more call-sites are inlined, the
performance improvement is less than 1 (see Table 4).

For the remaining five benchmarks (bzip2, h264ref,
hmmer, libquantum, and mcf), our inliner always achieves
positive performance improvements when 70% or more
invocations are covered. This is shown in Table 5.

6 Conclusions

In order to capture the function-invocation behaviour of a
program, we designed a new data structure, the call-site
tree, which is a nice balance between the static call graph
and the dynamic execution tree. In the call-site tree, two
different executions of a call-site (say α that is located

12 A.N-C. Yang et al.

within a function f) are represented by the same node
if and only if the calling chains from main to f in
the two different executions of α are identical. We also
proposed methods for analysing the call-site tree, and
demonstrated its application in function inlining. Our inliner
is profile-guided, customisable, incremental and is based
on LLVM IR. Experiment results for SPEC INT 2006 are
also included. The call-site tree is an expansion of the
traditional call graph. We proposed new analysis methods
that can calculate the upper limit of the size of the call-site
trees for non-recursive programs and the possible execution
counts of all call-sites. Our inlining system and analysis
methods can be improved with more accurate constant
propagation techniques. The analysis methods need more
advanced mathematical techniques in order to solve the
equations for recursive programs.

Acknowledgements

The work reported in this paper is partially supported
by National Science Council, Taiwan, Republic of China,
under grants MOST 108-2221-E-009-050-MY3 and MOST
111-2221-E-A49-111-MY3.

References

Baev, I. (2015) Profile-based Indirect Call Promotion, Technical
Report, Qualcomm Innovation Center, Inc., October.

Chen, C-Y., Fang, Y-A., Wang, G-R. and Chen, P-S. (2023)
‘A GCC-based checker for compliance with MISRA-C’s
single-translation-unit rules’, Connection Science, Vol. 35,
No. 1, pp.1–4.

Calder, B. and Grunwald, D. (1994) ‘Reducing indirect function call
overhead in C++ programs’, in Proceedings of the 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ‘94), pp.397–408.

Chang, P.P. and Hwu, W-M.W. (1989) ‘Inline function expansion
for compiling C programs’, in Proceedings of the ACM
SIGPLAN 1989 Conference on Programming Language Design
and Implementation – PLDI ‘89, ACM Press, New York, New
York, USA, pp.246–257.

Clang (2020) INLINING, Clang 16.0.0git Documentation, Section
3.2.

Chang, P.P., Mahlke, S.A., Chen, W.Y. and Hwu, W-M.W. (1992)
‘Profile‐guided automatic inline expansion for C programs’,
Software: Practice and Experience, Vol. 22, No. 5, pp.349–369.

Finkel, H. (2016) Intrinsics, Metadata, and Attributes: The Story
Continues!, Technical Report, Argonne National Laboratory,
November.

GCC (1987) GCC, The GNU Compiler Collection.
Henning, J.L. (2006) ‘SPEC CPU2006 benchmark descriptions’,

Comput. Archit. News, September, Vol. 34, No. 4, pp.1–17.
Kernighan, B.W. and Ritchie, D.M. (1988) C Programming

Language, 2nd ed., Prentice Hall.
Li, X., Ashok, R. and Hundt, R. (2010) ‘Lightweight

feedback-directed cross-module optimization’, in Proceedings of
the 8th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, New York, New York, USA,
pp.53–61.

Lattner, C. (2010) Extensible Metadata in LLVM IR, April [online]
https://blog.llvm.org/2010/04/extensible-metadata-in-llvm-ir.html.

Liu, W., Hu, E-W., Su, B. and Wang, J. (2021) ‘Using machine
learning techniques for DSP software performance prediction
at source code level’, Connection Science, Vol. 33, No. 1,
pp.26–41.

Linux (2021) dlopen(3) – Linux Manual Page.
Larin, S., Jagasia, H. and von Koch, T.E. (2017) Impact of the

Current LLVM Inlining Strategy, Technical report, Qualcomm
Innovation Center, Inc., February.

LLVM (2020a) The LLVM Compiler Infrastructure.
LLVM (2020b) LLVM Language Reference Manual – LLVM 10

Documentation.
LLVM (2023) LLVM Range Metadata [online]

https://llvm.org/docs/LangRef.html.
Ryder, B.G. (1979) ‘Constructing the call graph of a program’,

IEEE Transactions on Software Engineering, Vol. SE-5, No. 3,
pp.216–226.

You, Y-P. and Su, Y-C. (2022) ‘Reduced O3 subsequence labelling:
a stepping stone towards optimisation sequence prediction’,
Connection Science, Vol. 34, No. 1, pp.2860–2877.

Zhongxiao, Y.Z.X. (2023) LLVM Optimization-Inlining [online]
https://zhuanlan.zhihu.com/p/395552440.

Notes
1 “The ICP optimization is found to be the second most

profitable (after inlining) profile-based optimization in a
recent study” (Li et al., 2010).

2 A quote: “We only inline call-sites in the original
functions, not call-sites that result from inlining
other functions.” Comments in the source code of
“LegacyInlinerBase::inlineCalls(CallGraphSCC
&SCC).”

