Credit risk analysis using a hybrid data mining model
by S. Kotsiantis
International Journal of Intelligent Systems Technologies and Applications (IJISTA), Vol. 2, No. 4, 2007

Abstract: Credit risk analysis is an important topic in financial risk management. Owing to recent financial crises, credit risk analysis has been the major focus of the financial and banking industry. An accurate estimation of credit risk could be transformed into a more efficient use of economic capital. To this end, a number of experiments have been conducted using representative learning algorithms, which were tested using two publicly credit datasets. The decision of which particular method to choose is a complicated problem. A good alternative to choosing only one method is to create a hybrid forecasting system incorporating a number of possible solution methods as components (an ensemble of classifiers). For this purpose, we have implemented a hybrid decision support system that combines the representative algorithms using a selective voting methodology and achieves better performance than any examined simple and ensemble method.

Online publication date: Tue, 12-Jun-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Systems Technologies and Applications (IJISTA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com