Radial basis function neural network-based model predictive control for freeway traffic systems
by Wang Dongli, Zhou Yan, He Xiaoyang
International Journal of Intelligent Systems Technologies and Applications (IJISTA), Vol. 2, No. 4, 2007

Abstract: A method of Radial Basis Function neural network-based Model Predictive Control (RBF-MPC) for freeway traffic systems is proposed in this paper. Because of nonlinearity and uncertainty of freeway traffic flow, an accurate mathematics model cannot be obtained. Therefore, RBF neural networks employed to predict the future behaviours of freeway traffic flow are designed based on the MATLAB neural network toolbox. Then, to handle nonlinearity, time delay, uncertainty and strong disturbance, RBF-MPC for ramp metering is proposed. A Genetic Algorithm (GA) is used in the receding horizon optimisation. Compared with the no-control case and optimal-control case, the simulation results demonstrate that the proposed approach can alleviate traffic jams and increase main road capacity; thus the efficiency of freeway traffic is improved tremendously.

Online publication date: Tue, 12-Jun-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Systems Technologies and Applications (IJISTA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com