Robustness of complex networks considering load and cascading failure under edge-removal attack Online publication date: Fri, 30-Aug-2024
by Peng Geng; Zixin Ye; Huizhen Hao; Annan Yang; Yan Liu
International Journal of Communication Networks and Distributed Systems (IJCNDS), Vol. 30, No. 5, 2024
Abstract: This article challenges the conventional wisdom that edges with larger degrees are more important in complex networks. Through simulation analysis on the BA scale-free and WS small-world networks, we investigate edge-removal attack strategies, taking into account edge load and cascading failure. Specific attacks include high load edge-removal attacks (HLEA) and low load edge-removal attacks (LLEA). Our results demonstrate that the importance of edges is closely tied to the load parameter δ. When 0 < δ < 1, attacking edges with smaller degrees leads to greater cascading failures, rendering low-degree edges more important under these conditions. Conversely, when δ > 1, high-degree edges are more critical due to their ability to cause greater cascading failure upon removal. When δ = 1, cascading failure becomes independent of the degree of the removed edge. These findings underscore the need for considering edge loads and specific network conditions when assessing the importance of edges in complex networks.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Communication Networks and Distributed Systems (IJCNDS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com