ON THE REPEATED PARTITION SCHEDULING

PROBLEM

Zvi Drezner*®

In this paper we present the following scheduling problem. nk people are to be divided into
k groups of n people each. Such a division is repeated d times (each time a different partition
is scheduled). It is required that each person meets every other person (i.e. is in the same
group with him) at least once. The objective is that each person will meet with other
participants about the same number of times. The problem is formulated and heuristic
algorithms proposed for its solution. Extensive computational experiments are reported.

meeting organizer suggested the following problem. Twelve persons are participating

in a conference for seven days. They are divided into three groups of four persons each.

The grouping usually changes from one day to another. It is important that each person
meets every other person (i.e. be with him in the same group) at least once. Also, it is desirable
that each pair meets about the same number of times as the other pairs. Throughout the paper
we refer to this specific problem (with three groups of four people each over seven days) as the
particular problem. The particular problem originated in planning a golf tournament. For this
particular problern there are 66 possible pairs and 126 pair-wise meetings throughout the seven
days. This means that on the average each pair meets close to twice (the average is 21/11).
Therefore, the best possible solution is having 60 pairs meet twice and six pairs meet once.
However, such a solution has not been found yet.

It is relatively simple to find schedules for which each person meets every other person.
However, when arrangements are randomly generated, such feasible arrangements occur only
once or twice in 10,000 trials. Avoiding four or more meetings can be achieved by trial and

*Zvi Drezner is a Professor in the Department of Management Science at California
State University, Fullerton.

Manuscript received February, 1996, Revised, May, 1997 & September, 1997

65



JOURNAL OF BUSINESS AND MANAGEMENT

error (the maximum possible number of meetings is seven). The objective is to find a schedule
where each pair meets once, twice, or three times, and the number of pairs who meet three times
is minimized.

After a long manual effort for some years, the organizer found a solution with twelve pairs
meeting three times (and 36 pairs meeting twice, eighteen pairs meeting once). By randomly
generating computerized solutions and crude improvement procedures a solution with nine pairs
meeting three times was found. The algorithms proposed in this paper yielded a solution with
only three pairs meeting three times (and 54 pairs meeting twice, nine pairs meeting once).

The general problem is related to personnel assignment problems [1-5]. Several business
applications are described in the next section.

APPLICATIONS

Applications in scheduling and planning of operations are quite common. Such business
applications are presented for the particular problem of 12 objects, 3 groups of 4 objects each,
and seven days. Applications of the same type may, of course, have different numbers of objects,
groups, and days.

1. An operation uses 12 machines (or workers, or any type of resources). There are 21 tasks
to be completed in one day. Each task requires 4 machines, so 3 tasks can be performed
simultaneously and seven periods are required for the completion of the whole project. The
schedule is planned ahead of time so no changes are possible during the day. If one machine
is out of order for a task, (or a worker did not show up, or a resource is unavailable), the task
can be completed but some extra cost is incurred. However, if two machines are out of order
for the same task, the task cannot be completed which adds a significant cost to the
operation. We would therefore wish to design a schedule such that the number of times that
each pair of machines is assigned to the same task is about the same. If a certain pair of
machines is assigned many times to the same task, then the operation will lose an excessive
amount if this particular pair of machines happens to be out of order. Assume, for example,
that the probability that a machine is out of order is 0.02 (2%). The probability that all
machines are operating and the project is completed without any extra cost is 0.98"
=0.7847. The probability that exactly one machine is not operating is 0.1922. The
probability that exactly two machines are out of order is only 0.0216, which leaves a
probability of 0.0015 that three or more machines are inoperative. Any schedule will have
exactly seven tasks for each machine. Therefore, the extra cost incurred when one machine
is out of order is the same for all configurations and we have no control over it. By selecting
a good schedule, we can get quite a uniform distribution of losses when two machines are
inoperative. The probability that three or more machines are inoperative is so low, that it can
be disregarded in the calculations.
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2. Twelve workers perform in a very stressful environment. The task requires dividing the
workers into three groups of four workers each to perform three different activities. Seven
sets of three activities each are required. If two workers are assigned to the same team too
many times, they may “get on each other's nerves”. The objective is to arrange a schedule
such that every pair meets about the same number of times. No pair meets four times and
the number of pairs which meet three times is minimal.

3. Twelve drugs are to be tested for possible harmful interactions between pairs of drugs. In
order to check all combinations one needs to perform 66 experiments in pairing drugs. This
might be too expensive. Three labs are available for such experiments and four different
drugs can be administered simultaneously in each experiment. The labs can be booked for
seven experiments each. A testing scheme needs to be designed such that in each of the
seven days the twelve drugs are divided among the three labs, four drugs to each. It is
necessary that each pair of drugs will be tested at least once. Furthermore, it is desirable that
every pair of drugs will be in the same group about the same number of times. Such a
scheme reduces the number of experiments from 66 to 21.

4. Twelve commercials are prepared for broadcasting. Only four slots are available in a
particular program. You wish to test these commercials and find the best combination of
four commercials. The effectiveness of each individual commercial depends on the other
commercials selected for showing. Some pairs of commercials enhance the effectiveness of
one another, and some pairs may reduce the effectiveness. Information about the interactions
between various commercials is not available. There are II{I;-)“:wS possible selections of
four commercials out of the twelve available ones. We do nibt have the resources to check
all of these possible selections. Twenty one groups of people are available for testing
combinations of four commercials, and there are 3 rooms available for simultaneous
showing. We would like to select seven partitions of the twelve commercials into three
groups of four each. Our objective is to have each pair of commercials represented in these
groups about the same number of times so that these 21 groups will evenly cover the
spectrum of possible pairing.

THE GENERAL PROBLEM

Let
P be a partition of people to groups over several days,
n be the number of people in each group,
k be the number of groups,
d be the number of days.
m,(P) is the number of times pair (¥, s) meets for a partition P,
N(P,i) is the number of pairs that meet i times for a partition P.
A Partition P is termed feasible if N(P,0)=0. In any partition P each person meets -] other
people each day for a total of nk(n-1)/2 pairwise meetings during the day. The total number of
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meetings is therefore dnk(n-1)/2. The total number of pairs is nk(nk-1)/2, and therefore the
average number of meetings between pairs is d(n-1)/(nk-1). These calculations can be
summarized in the following properties:

Property 1: EIN(PI) Z ): m,(P)=%2"'l—).

5=l r=3+1

Property 2: EN(P )= "k("k L P
3 NP
Property 3: The average munber of meetings, 4, is: 4-:2 o d(z '11)
2~
The number of possible partitions in one day, D, is: .
!
p-Ut
ntkt 1)

and therefore, the total number of possible partitions in all d days, T, is: Tz( 13 __1) For the
particular problem n=4, k=3, and d=7 yields D=5,775 and T= 5-10".

We distinguish between “perfect problems” where the average number of meetings
(property 3) is integer, and imperfect problems when the average is not an integer. Perfect
problems may have solutions for which all pairs meet exactly the same number of times. For
example, k=n and d=n+1 yield A=1. We found solutions for n=3,4,5 in which all people meet
exactly once. In Table 1 we present such a solution for the #n=3 case.

Table 1: #n=3, k=3, and d=4

Day Group 1 Group 2 Group 3
1 123 456 789
2 147 258 369
3 159 267 348
4 168 249 357
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For perfect problems the objective is clear: max {N(P,4)} subject to N(P,0)=0 by the best
selection of P. Define for a number X: | X] and [X] as X rounded down or rounded up,
respectively. The objective for perfect or imperfect problems is:

max { NP4} + NPJAD) }
P

subject fto:

@)

NMP,i)=0 for ismax{0)4)-2}
MP,i)H=0 for iz[41+2

Note that if 1<4<2, as in the particular problem, then N(P,i)>0 are allowed only for i=1,2, and
3. Therefore, the objective is equivalent to minimizing N(P,3).

AN INTEGER PROGRAMMING FORMULATION

There are D possible partitions in a day by equation (1), and there are R=nk(nk-1)/2
possible pairs. Define the matrix {a;} fori=1,..,D, and j=],...,R, such that a;=0 if in partition
P=ipair j is in two different groups and a,=1 if they are in the same group. For simplicity we
assume that the same partition will not be selected more than once during the d days. We define
x; for i=1,..,D as a 0-1 variable. x,=1 if partition i is selected in any of the days, and x,=0
otherwise. (If a partition is allowed for more than one day, then x, should bg defined as an
integer betwee zero and 4.) The number of times that pair j is meeting is: Ea e Asitis
proved in Lemma 1

below an equivalent objective function is to minimize ): l): ap;- -l

J=1 =1

Therefore, an integer programming formulation is:

R D
Min{/; |§ a’!xj_ [A]'flAJ

subject to:

D
A-1<y° axsldl+l Vigj<R (3)
i

D
E x,=d
i

x€{0,1}
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Note that the absolute value in the objective function of (3) can be “linearized” in the customary
way by defining 2R variables ; and ;" for j=1,...,R and equating quantity J in the absolute valye
toy;*-y; as a constraint and replacing the absolute value of term Jbyy 4y

Let I=|A4]. 1 is a given number independent of P.

Lemma 1: Subject to the constraints in equation (3), the objective function of (2) is equivalent
to the objective function of (3).

Proof: The objective function of (3), written in terms of N@P,i)is:

d
Min{Y" N(P,j)ji- [A];V“
i=0

| 3.

We distinguish between two cases: perfect and imperfect problems. For perfect problems (ie.
A =[A]=| A]), the constraints entail at most three non-zero N(P,i) for i=I-1, I, I+1. Since the
sum of the N(P,i)'s is constant by Property 2, maximizing N(P,]) is equivalent to minimizing the
sum of N(P,I-1)+N(P,I+1). For imperfect problems, a feasible solution may have at most four
positive N(P,i)'s: N(P,I-1), N(P,1), N(P,I+1 ), and N(P,I+2). The objective function of (3) to be
minimized is: F=1.5N(P,I-1) + 0.5N@,1) + 0.5N(PI+1) + 1.5SN(P1+2). By property 2:
F=0.75nk(nk-1) - (N(P,) + N@,I+1 ). Therefore, minimizing F is equivalent to maximizing
NEPD+NPI+]). =

Another interesting lemma is that minimizing the sum of squares of the number of meetings
is an equivalent objective. Since the mean of the number of meetings is constant by property 3,
minimizing the variance of the number of meetings is equivalent to our objective.

Lemma 2: Subject to the constraints of (3), minimizing the sum of squares of the number of

nk~1 ik d
meetings 3> 3 m)P)=YiN@,) is equivalent to maximizing N(P,J)+N(P,I+]).
5=1 p=s+1 i=0
Proof: For a given number J:
d d
E i2N(P,iy =E (i-J’N(P,iy +2iIN(P,i)-J*N(P,i)
i=0 i=0

nk-1) (4)
7 °

3G DN 2D

i=0

Therefore, minimizing the sum of squares is equivalent to minimizing the sum of squares of the
- number of meetings adjusted by subtracting a constant. For perfect problems: there are at most
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three positive N(@,i)'s: for i=I-1, I, I+1. By applying J=/ in (4), the objective function is
identical to that of (3) because absolute value and a square of -1, 0, and 1 are the same. For
imperfect problems apply J=/+0.5 in (4). There are at most four positive N(P,i)'s and after
subtracting J=I+0.5 the sum of squares is equivalent to:

ON(PI=1) NP NPJ+1) NP I+2) 9 mknk=1) _yrnip 1y NP 1)
: 4 4 2

which proves the equivalency between the two objective functions.
HEURISTIC ALGORITHMS

The integer programming formulation lends itself to very large problems even for moderate
values of , k, and d. We therefore explore heuristic algorithms for getting good solutions for
the problem. Heuristic algorithms through performing pair exchanges are proposed. A random
partition for d days is generated and improvements through pair exchanges are considered. Such
an approach can be repeated many times and the best solution obtained that way, is selected. In
fact, as is demonstrated in the computational results section, these heuristics are very fast for
problems of the size of the particular meeting problem.

Three rules for determining pair exchanges were examined. Let A and m be the maximal
and minimal number of meetings for a partition P. If M=m (for perfect problems) or M=m+1
(for imperfect problems), then the best possible solution has been found. The first two rules try
to lower N(P,M) (and alternatively, if this cannot be achieved, lower N(P,m) without increasing
N(P,M)). These rules are quite “natural” for that objective.

Rule 1: Consider all the pairs that meet A times. For each pair find the A instances where they
are assigned to the same group. Check all pair exchanges between one member of the pair and
another person in a different group. An exchange is performed if no other pair which now meets
M-1 or M times will meet one more time.

Rutle 2: For each pair (7,s) that meets m times check all pair exchanges that move 7 and s to the
same group (if they were not in the same group before) as long as the following holds: (i) no
other pair that met m or m+1 times will meet one fewer times, (ii) no pair will meet M+ times,
and (iii) the number of pairs who meet M times does not increase.

These two rules were designed to ensure no cycling. It is proposed to apply Rule 1 first and

if no improvement is possible by Rule 1, apply Rule 2 and if exchanges were made alternate
between the rules until no further exchanges are possible by any rule.
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Lemma 3: Applying Rule 1 and Rule 2 alternately must terminate in a finite number of
iterations.

Proof: All Possible P's can be arranged by the following lexicographic order. Each P has g
value for M and m with #M/ pairs meeting M times and #m pairs meeting m times. Compare
partitions P, and P, with M,, m, and M, m,, respectively. P, precedes P, if: M,>M, or M, =M,
and #M>#M, I M,=M, and #M,=#M,, then P, precedes Py if my<m, or m;=m, and #m,>¥m,
This divides all possible partitions to a finite number of sets where the members of each set are
lexicographically equal. It can be easily verified that each application of Rule 1 or Rule 2 results
in a partition which is greater lexicographically.

Note that a bound on the number of iterations can be established because the number of
possible groups can be easily determined. This bound is polynomial in n, &, and d.

Applying Rules 1 and 2 alternately on the particular problem (n=4, k=3, d=7) required
0.038 seconds of computer time on an IBM 486 compatible per starting solution. The best
known solution of 9 pairs meeting once, 54 pairs meeting twice, and 3 pairs meeting three times
was obtained only once in 150,000 starting solutions. We therefore considered another rule
based on Lemma 2.

Rule 3: Check all pair-wise exchanges between persons in different groups and perform the

k-1 nk
exchange that yields the smallest sum of squares ):] 3" mXP). Stop when no improvement
in the sum of squares is possible. st

Calculating the change in the sum of squares:

By exchanging a pair (7,s) between two groups on a particular day, m,, or m,, for some ¢ s,
¢ may increase or decrease by 1. (For simplicity of notation we omit the partition £ from m,(P))
If'm, increases by 1 than the change in the sum of squares is 2m,,+1, and if it decreases by 1 the
change is -2m_+ 1. There are 2(n-1) increases and 2(n-1) decreases for a tota] of 4(m-1) such
changes. For each prospective pair exchange (7,s) on a certain day, calculate the sum S(r,s) as
follows: when m,, is increased by the exchange, add m,, to S(#,s), and when m,, is decreased
subtract m,, from S(7,s). The change in the sum of squares is 28(r,s)+4(n-1) and therefore the
pair exchange that yields the smallest S(r,s) is exchanged as long as S(r.s) <-2(n-1).
If min{S}>-2(x-1) no improvement by Rule 3 is possible. Note that the change in the sum of
squdres is always even (it can be proven that for a certain problem with given #,k,d, the sum of
squares is either even or odd for all confi gurations depending on whether dnk(n-1)/2 is even or
odd, respectively). The complexity of one iteration of Rule 3 is as follows. Maintaining the
vector of m,,'s is dominated by evaluating all possible pair exchanges. The number of possible
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pair exchanges is dn’k(k-1)/2, and for each pair the calculation of the change in the sum of
squares requires the summation of 4(n-1) numbers for a total effort of o(dn’i’). The algorithm
is polynomial because the number of possible sum of squares is limited by &nk(nk-1)/2 (a
tighter bound can be found) and every iteration reduces this number by at least 2.

This rule was proven to be the most effective for the particular problem. 200,000 partitions
were randomly generated using a simple pseudo-random number generator and the various rules
were applied on these starting solutions. The best known solution was obtained 5,514 times (or
about once in 36 cases). Average run time for applying Rule 3 was 0.092 seconds per starting
arrangement. Applying Rules 1 and 2 on the final arrangement of Rule 3 increased the run time
to 0.106 seconds. It is interesting to note that applying Rules 1 and 2 on the final solution of
Rule 3 did not yield more of these best solutions. This means, of course, that this solution cannot
be improved by Rules 1 and 2, but surprisingly no other final arrangement of Rule 3 could be
mmproved by Rules 1 and 2 to yield the best known solution. However, this property does not
hold in general. For example, the problem with k=2, n=3 and d=35 is a perfect problem with
A=2. By equation (1) D=10 and consequently the total number of possible partitions is 7=126.
By total enumeration it was found that the optimal solution is N(P,1)=N(P,2)=N(P,3)=3.
Applying Rule 3 and then Rules 1 and 2 for 10,000 randomly generated starting arrangements
yielded the optimal solution in all cases. However, applying Rule 3 only obtained the optimal
solution only in 2,705 cases out of 10,000.

ADDITIONAL COMPUTATIONAL EXPERIMENTATIONS
We investigated the distribution of outcomes using Rule 3 only on the particular problem

for 10,000 randomly generated starting arrangements. In Table 2 the outcomes in the order of
frequency are presented.
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Table 2: Applying Rule 3 Only

Number of Meetings Sui of
Frequency S
0 1 2 3 4 quares
0 13 46 7 0 2708 260
0 12 48 6 0 1888 258
0 14 44 8 0 1866 262
0 11 50 5 0 1281 256
0 15 42 9 0 938 264
0 16 40 10 0 306 266
0 9 54 3 0 298 252
1 10 49 6 0 115 260
1 12 45 8 0 114 264
1 11 47 7 0 106 262
1 13 43 9 0 77 266
1 8 53 4 0 75 256
0 17 38 11 0 65 268
0 13 47 5 1 32 262
0 14 45 6 1 31 264
1 14 41 10 0 30 268
0 15 43 7 1 27 266
0 18 36 12 0 12 270
0 16 41 8 1 11 268
1 15 39 11 0 6 270
0 17 39 9 1 ] 270
2 10 46 8 0 3 266
2 11 44 9 0 2 268
1 16 37 12 0 1 272
2 12 42 10 0 1 270
2 8 50 6 0 1 262
0 18 37 10 1 1 272

Note that the solution (0,10,52,4,0) was never obtained. It is possible that such solutions do
exist but Rule 3 improves them to (0,9,54,3,0). An example of a best known solution for the
particular problem is given in Table 3. Nine pairs meet once, 54 pairs meet twice, and only
three pairs (3-10, 5-12, and 7-8) meet three times.
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Table 3: Arrangement of Meetings for the Particular Problem

Day Group | Group 2 Group 3
1 1234 5678 9101112
2 2459 161012 37811
3 34610 251112 1789
4 23810 47912 15611
5 13512 471011 2689
6 26712 14811 35910
7 45812 12710 36911

Summer 1998

We experimented with a larger perfect problem of k=4, n=3, and d=11 for which 4=2. No
perfect solution with all 66 pairs meeting twice was obtained. The best solution of 2 pairs
meeting once, 62 pairs meeting twice and 2 pairs meeting three times was obtained 77 times
starting with 100,000 random solutions. In all 77 cases the same best solution was obtained by
Rule 3 alone. Run time was 0.202 seconds per iteration for applying Rule 3 only, and 0.214
seconds when Rules 1 and 2 were applied on the solution of Rule 3. A best known solution is
given in Table 4. Pairs 4-8 and 5-10 meet once, and pairs 5-8 and 4-10 meet three times. All

other pairs meet twice.

Table 4: Best known Solution for the k=4, n=3, and d=11 Problem

Day Group 1 Group 2 Group 3 Group 4
1 123 456 789 1011 12
2 4910 1511 3812 267
3 1911 4712 3610 258
4 2712 31011 169 458
5 249 358 1710 61112
6 21012 134 5711 689
7 2411 379 1810 5612
8 236 5910 7811 1412
9 357 2911 1812 4610
10 4710 125 6811 3912
11 2810 5912 167 3411
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CONCLUSIONS

of times.

Applications can be found in tournament scheduling, personnel assignment, production
scheduling, advertising, experimental design, and others.
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