Research on assessment of hybrid teaching mode in colleges stems from deep learning algorithm Online publication date: Mon, 09-Sep-2024
by Jinghui Xiu; Yingnan Ye
International Journal of Computational Science and Engineering (IJCSE), Vol. 27, No. 5, 2024
Abstract: The blended learning model combines traditional classroom instruction with online learning and has shown significant impact in higher education. Analysis of its effectiveness reveals a decrease in the root-mean-square deviation and the smallest mean squared error, indicating optimal training results. The network intrusion detection model has the lowest mean absolute error compared to other models. The SecRPSO-SVM model has the smallest average absolute percentage error. This innovative teaching model promotes personalised and autonomous learning, cooperative learning, and interactive communication. The use of deep learning algorithms provides new methods for educational assessment and personalised learning, positively impacting the future development of higher education.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Science and Engineering (IJCSE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com