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Abstract: Silicon wafers are crucial materials for semiconductor chip 
manufacturing. Detecting surface defects on wafers is essential for enhancing 
yield rates and identifying manufacturing issues. Traditional defect detection 
methods, relying on manual monitoring, are inefficient and inaccurate. Thus, 
there is a growing interest in leveraging deep learning for defect detection. 
However, existing algorithms still suffer from missed detections and slow 
processing speeds. To address these challenges, our study proposes a refined 
algorithm based on YOLOv7 for detecting wafer defects. We integrate  
SPD-Conv into the YOLOv7 MP module to enhance feature extraction 
accuracy and reduce computational complexity. Additionally, we incorporate 
the CBAM attention mechanism module into the backbone network to adapt to 
complex scenes. Moreover, we employ the SIoU loss function to improve 
bounding box regression accuracy. The WM-811k dataset is utilised for testing 
and evaluating the enhanced algorithm, achieving a recognition accuracy of 
92.23%, a recall rate of 94.1%, and a mAP of 92.5%. Additionally, the frame 
rate remains stable at 136 frames per second, outperforming existing 
algorithms. 

Keywords: surface defects on wafers; improved YOLOv7; SPD-Conv; CBAM 
attention mechanism; SIoU. 
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1 Introduction 

The semiconductor manufacturing sector has emerged as a critical industry, significantly 
impacting the development of multiple sectors. Notably, the production process of 
semiconductor wafers assumes a critical role in this context. The silicon wafer, serving as 
the initial material for semiconductor device fabrication, can accommodate thousands of 
minute grains in a single wafer. Each grain represents a chip to be processed, and the 
processing of silicon wafers is the foundational process in semiconductor chip 
manufacturing. However, during the transformation of silicon wafers into chips, intricate 
processes such as photolithography, polishing, etching, and cutting may engender various 
defects on the silicon wafer surface. If these defective grains are processed 
conventionally, the ultimate chip may manifest severe conductive defects, such as short 
circuits or open circuits, directly influencing the performance and quality of the chip. The 
main objective in detecting defects on wafers is to identify diverse types of defects, 
conduct a comprehensive analysis of their underlying causes, and expeditiously make 
adjustments to both equipment and operations, aiming to mitigate potential substantial 
losses (Kim et al., 2022). 

The initial identification of surface defects on wafers is conventionally performed 
manually by seasoned inspectors. This undertaking requires a heightened level of 
concentration, and extended periods of visual scrutiny can result in visual fatigue and 
diminished attentiveness. The manual inspection process presents challenges including 
slow inspection speed, diminished accuracy, elevated costs, and subjective assessments 
(Ma et al., 2023). Researchers employ carefully designed imaging systems to acquire 
uniformly illuminated images, enabling inspection personnel to observe surface defects 
clearly (Cumbajin et al., 2023; Zhao et al., 2024; Kim and Behdinan, 2023; Theodosiou 
et al., 2023). 

The advancement of image processing technology has led to the application of image 
processing-based algorithms in wafer surface defect detection (Jha and Babiceanu, 2023; 
Jizat et al., 2021; Xia et al., 2023; Yang et al., 2020). Post wafer imaging, template 
images are aligned with wafer images to eliminate background information. 
Subsequently, defect areas are categorised using manually designed features. 
Nevertheless, in real-world production scenarios, acquiring template images poses a 
challenge, and variations in brightness, angles, and proportions between wafer images 
and templates are common. This discrepancy can result in erroneous defect reports. 
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In recent years, the efficiency of deep learning methodologies, particularly 
convolutional neural networks (CNNs), has significantly advanced (Simonyan and 
Zisserman, 2014; He et al., 2016; Huang et al., 2017), across various computer vision 
realms, abundant surface defect detection (SDD) approaches leveraging CNNs have 
emerged (Wang et al., 2022). CNN-based networks simplify the algorithm development 
process by directly inputting wafer images into the model, eliminating the need for 
intricate image processing steps. This streamlined approach not only reduces the 
complexity of algorithm development but also enhances accuracy. For example, 
Krizhevsky et al. (2012) utilised AlexNet, Wang et al. (2020) introduced a hybrid  
DC-Net, termed as MDPR. Wang et al. (2020) conducted tests on six different wafer 
image databases using a combined classifier consisting of MPL, SVM, and CNN. 
Nakazawa and Kulkarni (2018) presented an approach involving the use of synthetically 
generated data to train and validate CNN models with simulated wafer images. 

In certain instances, possessing knowledge solely about the categories is insufficient; 
there is a need to ascertain their locations for a more precise identification of fault causes. 
Consequently, numerous object detection algorithms are utilised in wafer surface defect 
detection. Object detection networks are primarily split into two categories, with the first 
category encompasses the two-stage networks. Two-stage networks are distinguished by 
their utilisation of a region proposal network to produce candidate boxes initially, which 
are subsequently subjected to classification and regression. A classic example of a  
two-stage network is faster R-CNN (Girshick, 2015). Zheng and Zhang (2023) 
introduced an innovative approach for detecting surface defects on semiconductor wafers, 
utilising background subtraction in conjunction with faster R-CNN. Furthermore, to 
bolster feature extraction capabilities, a spatial attention module was integrated into the 
network, thereby improving detection performance, particularly for larger defects. The 
second type is the one-stage network, dispensing with the need for candidate box 
generation and instead directly providing classification and regression information for 
target objects. Typically, one-stage networks exhibit faster detection speeds. Chen et al. 
(2020a) pioneered the integration of generative adversarial networks (GANs) with the 
YOLOv3 object detection algorithm for detecting wafer defects in limited samples, 
enhancing YOLOv3’s capacity for generalisation. In detecting and locating wafer defects, 
Shinde et al. (2022) recommended the utilisation of the upgraded YOLOv4. In 
comparison to YOLOv3, YOLOv4 demonstrates significantly enhanced detection 
capabilities, delivering more efficient detection and localisation performance for intricate 
wafer defect patterns. Presently, the YOLO algorithm is extensively employed in 
industrial production and has emerged as the predominant object detection algorithm. 
Consequently, this paper adopts the most outstanding comprehensive performance 
algorithm in the YOLO series – YOLOv7, as proposed by Wang et al. (2023). 
Simultaneously, acknowledging the characteristics of small target feature sizes and the 
diverse and interwoven defect types on the wafer surface, targeted improvements are 
made to YOLOv7 in this study. 

2 Related work 

YOLOv7 is short for you only look once version 7, which is an improved version 
compared to YOLOv5. In comparison to its predecessor, YOLOv7 undergoes 



   

 

   

   
 

   

   

 

   

   4 C. Tang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

optimisations in terms of network structure, data augmentation, and other facets, with the 
objective of achieving superior and efficient object detection. YOLOv7 exhibits precision 
in accurately detecting the positions and categories of multiple objects, leading to its 
widespread application in intelligent surveillance and industrial inspection (Chen and 
Dang, 2023; Chen et al., 2023; Qiu et al., 2023; Yu et al., 2023; Yuan et al., 2022). 
YOLOv7 consists of various components, Figure 1 illustrates the network structure 
visually. 

• Input layer: the input layer resizes input graphics to 640 × 640, followed by random 
cropping, scaling, and concatenation to achieve data augmentation. 

• Backbone network: feature extraction is the main role of the backbone, utilising a 
customised version of CSPNet as the backbone network, incorporating of CBS, 
ELAN, and MP architectures is integral. CBS, which comprises Conv+BN+SiLU, is 
primarily utilised for channel transformation, feature extraction, and image 
subsampling. ELAN, consisting of multiple CBS units, ensures consistency in  
input-output feature sizes. The channel numbers vary in the first two CBS units, 
while the subsequent ones maintain consistent input and output channels, ultimately 
outputting the required channels after the last CBS. The MP module, utilised for 
detecting objects across different scales successfully pinpoints items of diverse 
dimensions. 

• Detection head: the detection head employs SPPCSP and ELAN modules to 
aggregate image features, retaining three detection heads for predicting target object 
class probabilities, confidence scores, and bounding box coordinates. The detection 
heads produce features at three scales: 20 × 20, 40 × 40, and 80 × 80, corresponding 
to large, medium, and small targets, respectively. 

Figure 1 Structure of the YOLOv7 network (see online version for colours) 

 

3 Proposed method 

3.1 SPD-Conv 

When detecting defects on the surface of semiconductor wafers, detecting tiny defects 
poses a challenge due to their often elusive nature. The difficulty arises from the low 
pixel count of these small target objects, resulting in limited information for the model to 
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learn. Convolutional neural networks effectively filter out a significant amount of 
redundant information within the receptive field. However, in cases where the image 
pixel count is low, the utilisation of strided convolutions and pooling could potentially 
result in the diminishing of detailed information. The space-to-depth convolution  
(SPD-Conv), with its convolutional operation and treatment of symmetric positive 
definite matrices, offers superior capabilities for extracting and utilising intrinsic features 
of the data. It demonstrates enhanced feature extraction while maintaining the count of 
parameters minimal and the computational intricacy at a reduced level, resulting in  
faster computations. Therefore, our approach integrates the spatial pyramid  
detection-convolutions (Jeyaprakash et al., 2020; Sunkara and Luo, 2022; Li et al., 2023) 
into the MP module of YOLOv7, thereby enhancing the precision of defect identification. 
The subsequent example will serve to clarify our point. Taking into account an input 
image X that has the dimensions of W × W × D1, we proceed to analyse how, at each 
stride interval, it is divided into multiple subsequent subsequences, each capturing 
distinct sub-features, as shown below: 

0,0   [0 : : ,, 0 : : ]=f X W P W P  (1) 

1,0 [1: : , 0 : : ], , = f X W P W P  (2) 

1,0 [ 1: : , 0 : : ]− = −Pf X P W P W P  (3) 

0,1 [0 : : , 1: ],:=f X W P W P  (4) 

1,1 [1: : , 1: : , ,  ]= f X W P W P  (5) 

1,1 [ 1: : , 1: : ]− = −Pf X P W P W P  (6) 

0, 1 [0 : : , 1: : ],  1, 1, ,− = − − Pf X W P P W P f P  (7) 

1, 1 1[ : : , 1: : ]− − = − −P Pf X P W P P W P  (8) 

where W is the size of the input image X and P is the partition factor, which is used to 
calculate the output of the SPD layer. 

As an example, consider an arbitrary intermediate feature map X. Each sub-map  
f(x, y) is constructed from feature vectors X(x, y), designed such that the coordinates x + i 
and y + j are scaled in a proportional manner. Consequently, a down-sampling of the 
feature map X by a certain factor is achievable by each sub-map. An instance is depicted 
in Figure 2, where P is set to 2, demonstrating the formation of the ensuing sub-feature 
sequences as follows: 

0,0 0 : :[ : , 0 : ]=f X W P W P  (9) 

1,0 1: :[ : , 0 : ]=f X W P W P  (10) 

0,1 0 : :[ : , 1 : ]=f X W P W P  (11) 

1,1 1: :[ : , 1 : ]=f X W P W P  (12) 
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Figure 2 Illustration of SPD-Conv structure with partition factor P = 2 (see online version  
for colours) 

 

Each sub-map takes the form of (W/2, W/2, D1), employing a downsampling factor set to 
2. Ultimately, these sub-feature maps are merged along the channel axis, resulting in the 
feature map X′, which exhibits a spatial reduction by a multiple of P and an increase in 
channel dimensions by a factor of P2. As the MP module contains convolution operations 
with a stride of 2, this study replaced the strided convolutions in the feature fusion 
network with SPD-Conv, as illustrated in Figure 3. 

Figure 3 Improvement of MP module (see online version for colours) 

 

3.2 Add attention mechanism 

In surface defect detection on semiconductor wafers, the defects to be detected are often 
small. In order to augment the model’s capacity for detecting such targets, the YOLOv7 
backbone network’s ultimate layer has been supplemented with the convolutional block 
attention module (CBAM) (Woo et al., 2018; Christou et al., 2004; Canayaz, 2021), as 
illustrated in Figure 4. CBAM comprises two distinct sub-modules – the channel 
attention module that compresses spatial dimensions while retaining channel information 
to focus on meaningful image features, and a spatial attention module that directs 
attention towards object location to adjust resource allocation based on feature 
importance (Chen et al., 2020b). By simultaneously allocating attention across channel 



   

 

   

   
 

   

   

 

   

    Wafer surface defect detection with enhanced YOLOv7 7    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

and spatial dimensions, CBAM improves model performance (Guo et al., 2023). The 
basic CBAM structure is illustrated in Figure 5. 

Figure 4 YOLOv7 backbone network with added CBAM module (see online version for colours) 

 

Figure 5 Structure of CBAM (see online version for colours) 

 

The overall process of CBAM for feature maps generated by the network backbone 
includes the following steps: 

× ×∈ C H WF R  (13) 

Attention maps of the 1D channel type are produced by CBAM through the following 
process: 

1 1× ×∈ C
CM R  (14) 
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Spatial attention feature map in two dimensions: 
1× ×∈ H W

SM R  (15) 

This process can be delineated through the subsequent formula: 

( )′ = ⊗CF M F F  (16) 

( )′′ ′ ′= ⊗SF M F F  (17) 

where C, H and W represent the number of channels, height, and width, respectively. 

3.3 Optimisation loss function 

YOLOv7’s loss function comprises three distinct elements (Liu et al., 2023). The loss 
associated with bounding boxes evaluates the discrepancy in localisation between the 
predicted and the actual ground truth boxes. The target confidence loss quantifies the 
error in predicting whether the object in a box is a target. The class loss assesses the error 
in predicting object categories within boxes. YOLOv7 employs BCEWithLogitsLoss for 
the target confidence and class loss functions, while adopting the loss pertaining to 
bounding boxes utilises CIoU (Du et al., 2021) metric. The CIoU loss is defined in 
equation (18). 

( )2

2

,
1= − + +

gt

CIoU
ρ b b

Loss IoU v
c

α  (18) 

In this context, ρ2(b, bgt) represents the distance, measured in the Euclidean sense, 
between the centroids of the predicted bounding box and the corresponding ground truth 
bounding box. The symbol ‘c’ corresponds to the length of the diagonal of the tiniest 
enclosing rectangle containing both the ground truth and predicted boxes. The calculation 
for α is given by equation (12), and the calculation for v is given by equation (19). 

 
1

=
− +
ν

IoU ν
α  (19) 

2

2
4 arctan arctan = − 
 

gt

gt

w wν
π h h

 (20) 

The loss function based on CIoU does not completely consider the variances in 
orientation between the bounding boxes that are predicted and those that are grounded in 
truth. To address this, we introduce the SIoU (Gevorgyan, 2022) as a new bounding box 
similarity measurement that considers angles. In the equation, the CIoU loss has been 
substituted with the SIoU loss to improve the network’s efficacy. The SIoU loss is 
composed of four distinct elements: 

1 Angle loss 

The angle loss calculation method is shown in equation (21). 

Λ cos 2 arcsin  
4

   = × −      
hc π
σ

 (21) 
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( ) ( )max , min ,= −gt gt
h cy cy cy cyc b b b b  (22) 

( ) ( )2 2
, ,= −gt gt

cx cx cy cyσ b b b b  (23) 

where ( , )gt gt
cx cyb b  representing the central point of the actual bounding box and  

(bcx, bcy) indicating the central point of the inferred bounding box. 

2 Distance loss 

The calculation method for distance loss is shown in equation (24). 

Δ 2 − −= − −λρx λρye e  (24) 
22

,
 − −
  = =  

   

yx yx

gtgt
cc cc

x y
w h

b bb b
ρ ρ

c c
 (25) 

2 Λ= −γ  (26) 

(cw, ch) denotes the dimensions of the smallest rectangle that encompasses both the 
projected and the actual bounding boxes. 

3 Shape loss 

The calculation method for shape loss is presented within the confines of  
equation (27). 

( ) ( )Ω 1 1− −= − + −w h
θ θw we e  (27) 

( ) ( ),
max , max ,

− −
= =

gt gt

w hgt gt

w w h h
w w

w w h h
 (28) 

4 IoU loss 

The IoU loss computation is delineated in equation (29). 

= AIoU
B

 (29) 

A denotes the area of intersection between the actual bounding box and the one that 
has been projected, while B denotes the area of union between the two boxes. When 
calculating IoU, the ratio A/B signifies the degree of match between the two boxes. 

5 SIoU loss 

The method for computing the SIoU loss function used in this algorithm is defined in 
equation (30). 

Δ Ω1
2
+= − +SIoULoss IoU  (30) 
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4 Experiment and analysis 

4.1 Experimental setting 

The model proposed within the paper was implemented and tested using Python 3.8 and 
PyTorch 1.11.0. The computational setup used for experimentation consists of: Ubuntu 
16.04 LTS operating system, Intel Xeon(R) E5-2680 v4 processor (3.3 GHz, 14 cores), 
and Nvidia Tesla T4 GPU (16 GB memory). Table 1 provides details regarding the 
specific parameters of the experimental environment. 
Table 1 Parameters of experimental environment 

Component Name 
Operating system Ubuntu 16.04 LTS 
CPU Intel Xeon(R) E5-2680 v4 
GPU Nvidia Tesla T4 
Training acceleration CUDA 11.7 
Programming language Python 3.8 
Deep learning framework PyTorch 1.11.0 

In this study, we utilised the publicly available WM-811k dataset (Yu et al., 2019) for 
both training and testing. This dataset comprises 811,457 wafer images collected from an 
actual semiconductor manufacturing process, with only 20% labelled. Due to the 
imbalanced distribution of defects, we uniformly selected 8 of the defect classes along 
with the defect-free images, totalling 18,143 wafer images for model development, as 
illustrated in Figure 6. Specifically, a total of 80% was allocated for the training phase, 
with 10% set aside for validation and the remaining 10% reserved for testing purposes. 
The nine types of defects in the dataset are illustrated in Figure 7. 

Figure 6 Number of samples for different types of defects (see online version for colours) 

 

4.2 Evaluation parameters 

To assess algorithm performance, we employed multiple evaluation metrics validating 
different aspects. Frames per second (FPS) reflects real-time detection capability. 
Precision refers to the ratio of true positives to positive predictions, while recall denotes 
the proportion of correctly identified actual positives. Equations (31) and (32) define 
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precision and recall, with TP representing true positives, FP representing false positives, 
and FN representing false negatives. AP represents per-class accuracy, averaged across 
recall thresholds to compute mean average precision (mAP) in equation (34). This 
evaluates accuracy across all classes, defined in equation (33). 

  
=

+
TPPrecision

TP FP
 (31) 

=
+
TPRecall

TP FN
 (32) 

1

0
( )= AP P r dr  (33) 

1

1= 
N

imAP AP
N

 (34) 

4.3 Experimental analysis 

For the purpose of evaluating the detection efficacy of the enhanced YOLOv7 network 
architecture in comparison to current models employed in object detection, we carry out a 
comparative analysis with the currently other classical object detection models. The 
evaluation metrics for each model are summarised in Table 2. Observing the table allows 
us to note that the mAP of improved-YOLOv7 reaches 92.5%, significantly higher than 
other methods, while also exhibiting superior recall and precision values. Furthermore, 
we utilise FPS as an assessment metric for object detection speed. From the FPS metric, 
it is evident that our method achieves high detection speed, particularly outperforming 
faster R-CNN by a factor of 6. Overall, our method demonstrates high accuracy for 
semiconductor wafer surface defect detection, coupled with high detection efficiency. 

In Figure 8, a comparative evaluation is presented, depicting the overall loss curves of 
the improved-YOLOv7 model alongside those of other traditional models for object 
detection. The improved-YOLOv7 loss curve exhibits a faster decreasing trend, stable 
convergence speed, and lower final loss value compared to the other models. This 
indicates that the improved-YOLOv7 model exhibits a higher degree of training 
proficiency and operational excellence. Figures 9, 10, and 11 depict a comparative 
analysis of the training procedures for the improved-YOLOv7 model with other 
traditional models for object detection. This analysis indicates that during the initial 
training phase, improved-YOLOv7 demonstrates robust learning capability and achieves 
faster convergence. Additionally, it exhibits better mAP, recall, and precision values. The 
comparisons above underscore the strong performance of improved-YOLOv7. 

In Figures 12 and 13, the detection performance of the Improved YOLOv7 is 
compared with that of the original YOLOv7. The graphs demonstrate the improved 
YOLOv7 model achieves higher confidence in detecting wafer defects. Additionally, 
when the confidence threshold was set to 0.1 and the NMS IoU threshold was set to 0.1, 
we observed that the original YOLOv7 model missed detections of small defects, 
whereas the improved YOLOv7 successfully detected these small defects. This further 
confirms the suggested method’s effectiveness at lowering the incidence of undetected 
cases. 
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Table 2 Performance comparison with other classical object detection models 

Method Precision Recall mAP FPS 
Improved YOLOv7 92.23% 94.1% 92.5% 136 
YOLOv7 88.56% 87.4% 86.2% 116 
YOLOv5 83.36% 86.8% 84.1% 91 
Faster-RCNN 89.06% 92.1% 89.2% 22 

Figure 7 Example semiconductor wafer defects in WM-811k dataset, (a) center (b) donut  
(c) EdgeLoc (d) EdgeRing (e) loc (f) random (g) scratch (h) near-full (i) none  
(see online version for colours) 

   
 (a) (b) (c) 

   
 (d) (e) (f) 

   
 (g) (h) (i) 
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Figure 8 Comparative analysis of total loss curves between improved-YOLOv7 and traditional 
object detection models (see online version for colours) 

 

Figure 9 Comparison of recall curves for improved-YOLOv7 and classical object detection 
models (see online version for colours) 

 

Figure 10 Comparison of precision curves for improved-YOLOv7 and classical object detection 
models (see online version for colours) 
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Figure 11 Comparison of MAP curves for improved-YOLOv7 and classical object detection 
models (see online version for colours) 

 

Figure 12 Detection results of YOLOv7 (see online version for colours) 

     

Figure 13 Detection results of improved-YOLOv7 (see online version for colours) 

     

5 Conclusions 

This study aims to address challenges in defect localisation and classification in 
semiconductor manufacturing processes by the improved YOLOv7 algorithm. The 
YOLOv7 MP module is enhanced through the integration of SPD-Conv in the improved 
algorithm to improve feature extraction accuracy and reduce computational complexity. 
Additionally, the YOLOv7 network is enhanced by embedding the CBAM attention 
mechanism module, thereby boosting its capacity for feature extraction and enhancing 
detection capabilities for smaller and less prominent targets. Furthermore, to accelerate 
training speed and enhance inference accuracy, we substitute the bounding box loss 
function in YOLOv7 with SIoU. 

The experimental outcomes indicate that the suggested algorithm attains a high level 
of precision on the WM-811k dataset, with a mAP of 92.5%, while also enhancing 
detection speed to 136 frames per second. As semiconductor chip features become 
increasingly smaller, traditional detection methods struggle to effectively identify wafer 
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surface defects. However, the results still indicate a significant proportion of 
misjudgements and omissions, highlighting the need for further optimisation of network 
architectures in future work. 
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