Implementation of a novel technique for ordering of features algorithm in detection of ransomware attack Online publication date: Mon, 07-Oct-2024
by Laxmi B. Bhagwat; Balaji M. Patil
International Journal of Electronic Security and Digital Forensics (IJESDF), Vol. 16, No. 6, 2024
Abstract: In today's world, malware has become a part and threat to our computer systems. All electronic devices are very susceptible/vulnerable to various threats like different types of malware. There is one subset of malware called ransomware, which is majorly used to have large financial gains. The attacker asks for a ransom amount to regain access to the system/data. When dynamic technique using machine learning is used, it is very important to select the correct set of features for the detection of a ransomware attack. In this paper, we present two novel algorithms for the detection of ransomware attacks. The first algorithm is used to assign the time stamp to the features (API calls) for the ordering and second is used for the ordering and ranking of the features for the early detection of a ransomware attack.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Electronic Security and Digital Forensics (IJESDF):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com