Application of integrated image processing technology based on PCNN in online music symbol recognition training
by Ting Zhang
International Journal of Wireless and Mobile Computing (IJWMC), Vol. 27, No. 4, 2024

Abstract: To improve the effectiveness of online training for music education, it was investigated how to improve the pulse-coupled neural network in image processing for spectral image segmentation. The study proposes a two-scale descent method to achieve oblique spectral correction. Subsequently, a convolutional neural network was optimised using a two-channel feature fusion recognition network for music theory notation recognition. The results showed that this image segmentation method had the highest accuracy, close to 98%, and the accuracy of spectral tilt correction was also as high as 98.4%, which provided good image pre-processing results. When combined with the improved convolutional neural network, the average accuracy of music theory symbol recognition was about 97% and the highest score of music majors was improved by 16 points. This shows that the method can effectively improve the teaching effect of online training in music education and has certain practical value.

Online publication date: Mon, 07-Oct-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Wireless and Mobile Computing (IJWMC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com