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Abstract: Through experiments, this paper verifies the practicability and 
effectiveness of the deconvolution deblurring algorithm. Through fuzzy kernel 
estimation and sharp edge recovery, we have effectively improved the defects 
of traditional edge detection algorithms, which also solve the clear hydrophobic 
image under CPS. The experimental data show that, compared with the 
traditional edge detection algorithm, the comprehensive PSNR value of the 
edge detection algorithm of insulator hydrophobic image based on 
deconvolution and deblurring algorithm in CPS environment is 27.02, and the 
improvement range is about 0.3 dB to 1.9 dB. In terms of operation time, the 
average operation time of this algorithm is reduced by about two-thirds. 
Therefore, the following conclusions are drawn in this paper. The edge 
detection accuracy of insulator hydrophobic image considering deconvolution 
deblurring algorithm is very high, and the convergence performance is also 
very good. 

Keywords: image edge detection algorithm; deconvolution deblurring 
algorithm; insulator water repellency; image processing; CPS. 
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1 Introduction 

Following the mature progress of informatisation building and the expansion of power 
grid scale, the power system has been continuously improved. As one of the important 
equipment for system line insulation, insulators have attracted more and more attention to 
their quality and safety performance. However, as the running time goes on and on, the 
insulator will age in different degrees under the influence of external environmental 
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factors, which not only seriously affects its application value, but also easily causes 
accidents. Therefore, its hydrophobicity must be regularly tested. However, because of 
the issues of poor contrast, shadow, and uneven illumination in conventional hydrophobic 
image edge detection algorithms, it is difficult to obtain good results in image 
manipulation. Therefore, it is very urgent to build a set of efficient image edge detection 
algorithm to protect the safety of power grid lines. The deconvolution deblurring 
algorithm, as one of the image restoration technology algorithms, can not only etains the 
maximum amount of valuable information in the image, but also has a good image 
processing effect, and is widely used in the area of science and engineering. Using it in 
insulator detection can increase the precision of hydrophobicity measurements, and has 
practical value in improving the performance of the insulator hydrophobic image edge 
inspection algorithms. 

The improvement of the performance of the edge detection algorithm for insulator 
hydrophobic images has always been the focus of many scholars’ research. In order to 
investigate the causes of the hydrophobicity fluctuations of the algorithm, Cheng et al. 
(2018) conducted superficial energy test and FTIR spectrum analysis of the surface 
material according to the two-drop approach. Shaik et al. (2017) made a brief study on 
the edge detection algorithm of insulator hydrophobic image with noise, and found a 
better method by comparing the experimental results. Zhang and Zhang (2019) conducted 
in-depth research on the principle of edge detection algorithm for insulator hydrophobic 
image, and realised the accurate location and extraction of image edge. Yu et al. (2018) 
used the up-down method to study the pollution flashover performance of the insulator 
hydrophobic image edge inspection methods and the influence of the high electric field 
strength part. Jayabal et al. (2019) used PC analysis to rank features extracted from 
binary images according to their principal components, and found that edge detection 
algorithms improved categorisation precision with the build-up of sequential 
characteristics. Leng et al. (2017) conducted experiments on the edge detection algorithm 
of insulator hydrophobic images by incorporating Gaussian filtering and bilateral 
filtering. The results demonstrated that the method enables significant decrease in 
computational effort and obtain better performance. As the insulator inspection 
technology has improved, the expansion of the industry has a higher demand for 
algorithms. The insulator hydrophobicity under the previous research approaches has 
struggled to match the new needs in terms of quality and efficiency, and the 
deconvolution deblurring algorithm can play its advantages in this problem. 

In past studies, deconvolution deblurring algorithms have been tried to deal with 
various image problems. Chang et al. (2017) proposed a novel single-image 
deconvolution deblurring algorithm for processing non-uniform movement images 
ambiguous by motion objects. Hang et al. (2017) developed an efficient image restoration 
method based on deconvolution deblurring and applied it to the image model through 
denoising decoupling technique. Zheng et al. (2018) proposed an modified single-image 
deconvolution rapid deblurring method to constrain the image gradient distribution. In 
order to solve the problem that the sampled fluorescence signal is distorted by optical 
blurring and photon counting noise, Tao et al. (2019) introduced a deconvolution 
deblurring method to reduce the degradation problem. Zhe et al. (2018) used the 
deconvolution deblurring algorithm to analyse the blurred image problem of hand-held 
cameras in low light conditions. Chang et al. (2018) divided the blurred image into a 
sharp edge portion and a flat portion, and proposed a mixed single-image motion-based 
deconvolution deblurring method to solve the existing issues. The deconvolution 
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deblurring algorithm has been well used in recent years. However, the idea of combining 
it with the insulator hydrophobic image edge detection algorithm to solve practical 
problems has not been deeply explored. To better enhance the efficiency and value of the 
algorithm. The edge detection algorithm of insulator hydrophobic image considering 
deconvolution deblurring algorithm is of great significance. 

Considering the deconvolution deblurring algorithm, it further improves and enhances 
the defects existing in the edge detection algorithm of insulator hydrophobic image. The 
algorithm verification data shows that the comprehensive PSNR value of the six types of 
hydrophobic images under the algorithm in it is 27.02, while the traditional edge 
detection algorithm is 26.33, and the maximum improvement is about 1.9 dB. The RRE 
values of the two algorithms also show a big difference. The comprehensive value of the 
algorithm in it is only 6.55, while the average RRE of the traditional edge detection 
algorithm reaches 6.98. In terms of running time, the average operation time of it is 
shortened by nearly 2/3 by comparison with the conventional approach. It can be seen 
from the verification data that the insulator hydrophobic image edge inspection method 
taking into account the deconvolution and deblurring method can shorten the running 
time of the algorithm and ensure its feasibility on the basis of good detection results. 

2 Deconstruction of image edge detection algorithm for insulator 
hydrophobicity 

2.1 Characteristics of insulator hydrophobicity image and its algorithm 
processing 

As a general inspection and control of insulation on overhead electricity distribution lines 
and atop locomotives, insulators are an important device to guarantee the correct 
functioning of the whole distribution line system and locomotive motive force system. Its 
excellent electrical properties are manifested in hydrophobicity, but the hydrophobicity of 
insulators is not constant. As the operating time of the insulator becomes longer, the 
hydrophobicity of its surface will become worse and worse. 

Generally speaking, the reasons for the decrease in the hydrophobicity of insulators 
include five aspects, as shown in Table 1. 
Table 1 Reasons for the drop in hydrophobicity of insulators 

Sequence Reason Illustrate 
1 Damp Sharp drop in surface resistance leads to a sharp 

increase in leakage current 
2 Contaminant composition 

and accumulation level 
Decreased hydrophobicity due to dirt accumulation 

3 Low temperature Low temperature reduces Brownian motion of LMW 
molecules 

4 Quality Quality makes the difference in hydrophobicity 
5 Ageing Aging deteriorates the insulator composition 

It is obvious from Table 1 that with the increase of operating time, the insulator will show 
different degrees of aging, and its hydrophobicity will also decrease to different degrees. 
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Under the current environmental reality of a vast area and a large population, the number 
of insulators used in power construction is also very large, and the resulting flashover 
accidents will still occur (Cho et al., 2018). Therefore, it is essential to identify the 
hydrophobicity of insulators promptly through image detection in order to avoid 
accidents and keep the power system running properly. 

And affected by different external factors, the hydrophobic images often have some 
defects, so that the extraction effect of water droplets in the image is not obvious. In view 
of this feature, the edge detection algorithm needs to perform certain pre-processing to 
obtain accurate images for subsequent classification. 

To overcome the sensitivity of edge detection algorithms to noise, we incorporate 
pre-processing steps to reduce noise, which can obscure true edges in insulator 
hydrophobic images and lead to misdetections or missing critical features. Specifically, 
Gaussian filtering and median filtering techniques are utilised to smooth the image and 
suppress noise prior to edge detection. These pre-processing steps help to improve the 
robustness of the edge detection algorithm against noise, ensuring more accurate and 
reliable edge detections. Generally speaking, the image manipulation in the edge 
inspection method of the hydrophobic image is divided into three steps, namely, 
enhancing the contrast, eliminating the reflection of water droplets, and segmenting the 
adhering water droplets. 

2.1.1 Enhance contrast 
In the insulator hydrophobic image, the contrast between the water droplets and the 
insulator background is very low, which brings great difficulty to the subsequent 
extraction of water droplets (Pajouhi and Roy, 2018). When performing image 
processing, the algorithm usually first converts the eal colour figure into a greyscale one, 
that is, extracts the luminance component for subsequent work, as shown in Figure 1. The 
procedure for transforming a real colour figure into a greyscale one is to weight 
proportionally the R, G and B constituent parts of each individual pixel of the real colour 
figure, and add them together to obtain a two-dimensional image. This conversion 
method can meet the needs of most image processing, but can not meet the requirements 
of enhancing the low contrast of hydrophobic images. 

Through relevant statistics, it is found that in the insulator hydrophobic image, 
whether it is a water droplet or a water film, except for the reflective point or reflective 
area, the R constituent value is almost the same as the surrounding background. However, 
the value of the G constituent is about 30 lower than the value of the background pixel, 
and the value of the B constituent is about 40 lower than the value of the background 
pixel, the R, G, B components of the reflective point are almost close to 240. Whether it 
is a water droplet or a background pixel, the value of the R constituent is the largest, and 
the B component is always the smallest. However, when the real colour figure is 
converted into a greyscale one, the B constituent with the largest difference is assigned 
the smallest ratio, so the final greyscale image has little contrast, as shown in Figure 2. 

 

 



   

 

   

   
 

   

   

 

   

    Edge detection algorithm of insulator hydrophobic image in CPS system 5    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 1 Convert colour image to greyscale image (see online version for colours) 

 

Figure 2 Region blocks with different pixel features (see online version for colours) 

 

Table 2 Contrast between water drop pixels and background pixels 

Pixel 
count 

Water 
droplets (R) 

Background 
(R) 

Water 
droplets (G) 

Background 
(G) 

Water 
droplets (B) 

Background 
(B) 

1 232 237 52 84 3 43 
2 235 239 52 83 5 45 
3 235 239 51 83 7 45 
4 234 237 53 84 6 43 
5 236 237 52 83 8 45 
6 235 237 51 83 7 45 
7 234 238 54 85 8 44 
8 234 238 51 84 6 46 
9 234 238 51 84 6 46 
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The places marked with numbers in Figure 2 represent the 5 regions with different pixel 
characteristics in the hydrophobic image, 1 represents the water film area, 2 represents 
the reflective area, 3 represents the water drop area, 4 represents the background area, 
and 5 represents the reflective spot area. Table 2 lists each of the ten pixels in Figure 2. 

2.1.2 Eliminate the reflection of water droplets 
In insulator hydrophobic image edge detection, the optical properties of water drops and 
membranes are distinct (Verma and Parihar, 2017). When the water repellency level of 
the insulator is lower, the water repellency is better, and the more water drops, the greater 
the contact angle between the water drops and the insulator. At this time, the water 
droplet is like a convex lens, and under the illumination of strong light, there will be 
obvious reflection points. This bright spot or bright area is brighter than the surrounding 
water droplets, and its pixel value components are much larger than other parts of the 
water droplet, which affects the subsequent extraction of water drops. When the water 
rejection level of the insulator is high, the water trace gradually becomes a whole water 
film. At this time, the touch angle separating the water film from the insulator is very 
small, so there are few or no reflective points. Under normal circumstances, the reflective 
points or reflective areas of water droplets are treated as uneven illumination. The image 
edge detection algorithm generally uses histogram equalisation to eliminate the influence 
of water droplet reflections. When the difference between the brightness of the reflective 
point or the reflective area and the surrounding pixel value is small, it can play a certain 
role, but when the difference is large, it basically does not work. 

2.1.3 Divide the adhering water droplets 
The adhesion of water droplets refers to the slight contact between the edges of two water 
droplets, which is manifested in the binary image as two white areas are connected by 
one or two pixels (Duan et al., 2018). In the process of judging the hydrophobicity level 
of insulators, the image edge inspection method is generally depending on the 
characteristic value of the largest water droplet or water film in the figure to judge the 
hydrophobicity. If the sum of the areas of the two adhering water droplets in the figure is 
greater than the area of the single largest water droplet, the two adhering water droplets 
will be regarded as one water droplet and their characteristic parameters will be extracted. 
However, the real largest water droplet is ignored, and errors will occur at this time. For 
binary images, the narrow connection between two primitives is generally eliminated by 
morphological opening operation, as described in Figure 3. 

For images of water droplets with a large water droplet area and few adhesion parts, 
the algorithm can meet the requirements. However, for images of water droplets with a 
small area of water droplets and a large number of adhering parts, the algorithm cannot 
meet the requirements, the shape of the water droplets will not be accurate enough, and 
even some water droplets may not be able to be extracted. 

2.2 Image edge detection algorithm based on deconvolution deblurring 
algorithm 

While the deconvolution deblurring algorithm exhibits promising results in improving 
edge detection for insulator hydrophobic images, it is important to note that the method is 
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computationally intensive and may require significant processing power and time. This 
can be a challenge for real-time applications in CPS environments. For the purpose of 
addressing the issues in the edge detection algorithm of insulator hydrophobic image, we 
adopt a deconvolution deblurring algorithm, efficient optimisation techniques is proposed 
to improve it, and exploit hardware accelerators such as GPUs to accelerate the 
computation process. Additionally, we limit the algorithm’s complexity by optimising the 
blur kernel estimation and edge restoration steps, ensuring that the algorithm remains 
feasible for practical CPS applications. 

Figure 3 Open operation process example figure 

 

First, model the formation of the insulator hydrophobicity image, and the process is 
shown in Figure 4. 

Figure 4 The process of image formation (see online version for colours) 

 

The formula is expressed as: 

B I k ε= ∗ +  (1) 

In formula (1), k is the fuzzy core, I is the latent figure, * is the concession operation, ε is 
the random noise of the figure, and B is the hydrophobic image collected by the imaging 
system. That is, the hydrophobic image can be regarded as a fuzzy core convolving a 
clear latent figure, and then adding random noise to get it. 

Most of the deconvolution and deblurring algorithms for hydrophobic images mainly 
take advantage of the property that the sharp edges of hydrophobic images are helpful for 
kernel estimation when estimating the blur kernel. The algorithm’s blur kernel estimation 
is therefore performed on high-frequency images, that is, one wants to recover the edge 
∇I of the insulator hydrophobic image B. The blur kernel estimation can be modelled as 
formula (2) (Ren et al., 2017): 

2 2
12 02,

min
x k

x k y γ k λ x∗ − + +  (2) 

Among them, y represents the level and perpendicular gradient of the hydrophobic image 
∇B = (∂xB, ∂yB)T, x represents the level and perpendicular gradient of the clear image  
∇I = (∂xI, ∂yI)T. k stands for the fuzzy kernel, ||·||0 stands for the l0 norm, and its function 
is to calculate the number of non-zero values in x. 
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Formula (2) contains three terms. The first term is the likelihood term, that is, the 
convolution of the recovered clear hydrophobic image x and the blur kernel k should be 
similar to the observed hydrophobic figure y. The latter item is the l2-norm regularisation 
item imposed on the blur kernel, which can stabilise the blur kernel estimation. The third 
term is the l0-norm regularisation term (Sheng et al., 2020). 

The solution of the fuzzy kernel is carried out under a multi-scale solution 
framework. The solution steps at each scale can be divided into fuzzy kernel estimation 
and sharp edge recovery, which are expressed as: 

2 2
22min

k
x k y γ k∗ − +  (3) 

In the fuzzy kernel estimation stage, the fuzzy kernel can be obtained by formula (3). 
Since the blur kernel estimation is performed on the high-frequency part of the image, x 
stands for the level and perpendicular gradient maps of the potentially sharp image, and y 
stands for the level and perpendicular gradient maps of the blurred image (Chen et al., 
2017). The formula is expressed as: 

,x x

y y

I Bx I y B
I B

∂ ∂   = ∇ = = ∇ =   ∂ ∂   
 (4) 

Expand the formula to: 
2 2 2

22 2min x x y y
k

I k B I k B γ k∂ ∗ − ∂ + ∂ ∗ − ∂  (5) 

In order to simplify the calculation, use FFT to transform the convolution operation in the 
formula into the multiplication of the corresponding points in the frequency domain, and 
take the derivative of k, which can be solved to make the formula (5) obtain the minimum 
value of k, as shown in formula (6). 

( ) ( ) ( ) ( )
( ) ( )

1
2 2

x x y y

x y

f I f B f I f B
k f

f I f I γ
−
 ∂ ∂ + ∂ ∂
 =
 ∂ + ∂ + 

 (6) 

In the step of restoring the sharp edge of the hydrophobic image, the term related to k is 
removed, and formula (7) is obtained: 

2
02min

x
x k y x∗ − +  (7) 

Formula (7) is a non-convex problem with non-differentiable points, which cannot be 
solved by traditional optimisation methods based on gradient descent, The solution 
process is very time-consuming if the brute force search method is used (Zhou et al., 
2017). The alternating orientation approach is applied here to tackle the problem in 
formula (7). 

Auxiliary variable w is introduced to transform formula (7) into an equivalent 
problem of formula (8): 

1 0
,

min s.t. ,
x w

λ w x k y w x∗ = =  (8) 

Then the Lagrangian function can be obtained as in formula (9), J1, J2 represent the 
Lagrangian multiplier, and u is a penalty parameter: 
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( ) ( )2 2
1 2 1 0 21 2 2, , , ( ) ( )

2
T T uL x w J J λ w J x w J x k y x k y x w= + − + ∗ − + ∗ − + −  (9) 

Therefore, the corresponding alternate iteration scheme is: 

( )
( )

( )
( )

1
1 2

1 1
1 2

1 1 1
1 1

1 1
2 2

arg min , , ,
arg min , , ,

n n n n
w

n n n n
x

n n n n

n n n

w L x w J J
x L x w J J
J J u x w
J J u x k y

+

+ +

+ + +

+ +

 =
 =
 = + −
 = + ∗ −

 (10) 

The minimum value of 1 2( , , , )n n nL x w J J  can be converted to the problem as shown in 
formula (11): 

2 2
1

2 1
2 2

1 1min n n n
x

x k J y x w J
u u

+∗ + − + − +  (11) 

The problem is solved as: 
2

1
1 1

1 1 2,

0, otherwise

n n n n λx J x J
μ μ μ

  + + ≥    



 (12) 

Only large-scale hydrophobic image gradient information is beneficial for blur kernel 
estimation. In the deconvolution image deblurring algorithm, the adaptive weight method 
is used to enhance the robustness of the blur kernel estimation for hydrophobic images. 
The large-scale gradient information that has a positive contribution to the blur kernel 
estimation is screened, and the small image gradient information that has a negative 
contribution to the blur kernel estimation is removed. The improved model is shown in 
formula (13) (Shahabinejad and Vosoughi, 2019): 

2 2
12 02,

min
x k

x k y γ k kλ x∗ − + +  (13) 

Among them, k = exp(–|γ|0.8), γ are defined as (Agarwal et al., 2021; Spaic et al., 2020): 

( ) 2

2( )

( )

( )
n

h

q N p

q N p

B q
γ

B q
∈

∈

∇
=

∇




 (14) 

Among them, B is the insulator hydrophobic image, and Nn(p) is the window of h * h 
centred on each pixel. For the small-scale edge information, due to the sign of the 
gradient image ∇B(q), when calculating 

( )
( ),

nq N p
B q

∈
∇  it will cancel each other out, 

resulting in γ being too small, so that the small-scale edges that are not conducive to blur 
kernel estimation can be eliminated. 
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2.3 Algorithm verification and deconstruction 

For the purpose of testing the effectiveness of the edge inspection method of the insulator 
hydrophobic image considering the deconvolution deblurring algorithm, some standard 
insulator hydrophobic standard images are tested in this paper, and the image information 
is shown in Table 3. 
Table 3 Basic information of the test image 

Sequence Size Greyscale 
Hydrophobic image 1 256 × 256 16 
Hydrophobic image 2 256 × 256 32 
Hydrophobic image 3 512 × 512 32 
Hydrophobic image 4 512 × 512 64 
Hydrophobic image 5 1,024 × 1,024 32 
Hydrophobic image 6 1,024 × 1,024 64 

2.3.1 Image detection 
In the tests of this paper, in order to examine he implementation of the algorithm under 
degenerate conditions, the degradation model of the insulator hydrophobic image is used 
and Gaussian white noise with a standard deviation of 0.5 is added. Firstly, the traditional 
image edge detection algorithm and the image edge inspection method that takes into 
account a deconvolution and deblurring method are used to process the insulator 
hydrophobic degradation image and compare the detection results. The parameters in 
each algorithm are set to the best value by experimental method. The result is shown in 
Figure 5. 

Figure 5 Hydrophobic image restoration effect under two algorithms, (a) depicts the outcome of 
the edge detection algorithm in this paper (b) depicts the outcome under the 
conventional edge inspection algorithm (see online version for colours) 

 
(a)     (b) 



   

 

   

   
 

   

   

 

   

    Edge detection algorithm of insulator hydrophobic image in CPS system 11    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

From the outcome of the edge inspection algorithm in this paper and the conventional 
approach in Figure 5, it is clear that the insulator hydrophobic image ripple effect in the 
traditional algorithm is serious, and the edge effect is poor. The reason for this 
phenomenon is that the establishment of the model in the traditional edge detection 
algorithm deviates greatly from the original hydrophobic image, which causes the 
algorithm to deviate from the actual optimum during the iterative procedure. Although 
the algorithm adjusts for this bias by reconstructing the model, since the new model is 
based on intermediate estimates, each estimated value is obtained by the same method, 
which makes it easy to make a certain defect in the image solidify continuously, resulting 
in more ripples, and the recovery of the edge is difficult to approach the original 
hydrophobic image. 

The edge detecting algorithm suggested in this paper considering the deconvolution 
deblurring algorithm solves this problem well. After comparison, it is observed that the 
results of the algorithm in this paper are generally less different from the original 
hydrophobic images. The outcomes of the algorithm suggested in this paper maintains the 
better restoration effect of the texture part, has a clearer edge, and also overcomes the 
problems of image reflection and low contrast in the traditional edge detection algorithm. 

2.3.2 Objective assessment 
For the purpose of assessing the restoration performance objectively, the  
peak signal-to-noise ratio (PSNR) and the relative residual error (RRE) are used as 
evaluation indicators. Although these two evaluation criteria have different forms, they 
essentially used the discrepancy between the original hydrophobic figure and the 
estimated hydrophobic figure as the basis for evaluation. The algorithm performance 
evaluation method used in this experiment is mainly based on these two objective 
quantitative evaluation standards, supplemented by subjective visual evaluation. 

Figure 6 Objective evaluation results of hydrophobic images, (a) shows the PSNR results (b) is 
the RRE result (see online version for colours) 

  
(a)     (b) 



   

 

   

   
 

   

   

 

   

   12 J. Wei    
 

    
 
 

   

   
 

   

   

 

   

       
 

From the objective evaluation metrics in Figure 6, it is apparent that for various test 
images, the improved edge inspection method in this paper has a superior PSNR ratio 
than the conventional method. Under the approach in this paper, the comprehensive 
PSNR ratio of the six types of hydrophobic images is 27.02, while that of the 
conventional edge inspection method is 26.33, and the improvement range is about  
0.3 dB to 1.9 dB. Combined with subjective visual evaluation, it shows that the approach 
in this paper is valid. In the RRE results, the RRE value of this paper is relatively small, 
the comprehensive value is only 6.55, while the average RRE value of the traditional 
edge detection algorithm reaches 6.98. From this result, people can clearly know that the 
algorithm in this paper has a superior fitting outcome, which makes the resulting image 
smoother and has a good suppression of noise. However, the traditional insulator 
hydrophobic edge detection algorithm has been damaged to a certain extent when 
processing images. The reason is that the images used in the experiments are all natural 
hydrophobic images. One of the characteristics of natural hydrophobic images is that 
their pixel greyscale and distribution lack regularity. That is to say, the correlation 
between them is not strong. In this paper, the modified edge inspection method under the 
deconvolution deblurring algorithm has strong directionality, so its advantages are well 
reflected. 

2.3.3 Operation time 
In terms of operation time, the running time required by the two algorithms to achieve 
convergence for different hydrophobic images under the degradation model is compared, 
and the findings are presented in Figure 7. 

Figure 7 Algorithm operation time result, (a) shows the operation time of the edge inspection 
method in this paper (b) shows the operation time of the traditional edge detection 
method (see online version for colours) 

  
(a)     (b) 
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From the contrast findings of the operation time of the algorithm in Figure 7 in different 
edge sub-hydrophobic images, it is clear that the present method has an ideal 
performance on the negative side of the convergence rate. In the face of six types of 
different hydrophobic images, considering the edge detection algorithm under the 
deconvolution deblurring algorithm, the comprehensive operation time is 244.53 s. 
Compared with the traditional edge detection algorithm’s comprehensive operation time 
of 589.77 s, the average operation time of this paper is shortened by about two-thirds. 
Generally speaking, when edge detection is performed on an insulator hydrophobic 
image, due to the inherent features of the figure, the algorithm often needs to repeatedly 
train the model. However, the edge detection algorithm under the deconvolution 
deblurring algorithm omits this step, which significantly enhances the convergence 
properties of the algorithm in the edge detection of hydrophobic images, enabling it to 
output quickly and accurately. 

3 Conclusions 

The guarantee of insulator performance is inseparable from the safe development of 
power grid construction. As an important parameter to detect insulator performance, 
hydrophobicity is particularly critical for its image edge detection algorithm. In this 
paper, the conventional edge detection method is improved by combining the 
deconvolution deblurring algorithm. In view of the problems of poor edge detection 
effect and unsatisfactory image restoration in the original algorithm, adaptive weights are 
used to strengthen the robustness of the estimation of the fuzzy core of hydrophobic 
images. In addition, the convergence properties of the algorithm are improved, the 
operation time can be controlled, and the further development of the practicability and 
feasibility of the algorithm is realised. Although this paper studies the limitations of the 
insulator hydrophobic image edge detection algorithm from multiple perspectives, the 
performance of the proposed edge detection algorithm based on deconvolution deblurring 
can vary with different insulator hydrophobic images and varying illumination 
conditions, the verification part of the algorithm still needs to be improved. To address 
this challenge, we suggest future work on adaptive parameter tuning mechanisms that can 
automatically adjust algorithm parameters based on the input image characteristics. In the 
follow-up study, further research will be conducted mainly on the shortcomings of the 
experimental level and research quality, and the utility of the algorithm will be 
continuously improved to make it put into practical application faster. 
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