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Abstract: Intending to the issue that traditional textile pattern classification 
methods have insufficient training samples and ignore the attributes possessed 
by the style objects, this article designs a textile pattern style classification 
method relied on popular mixture enhancement and attribute clustering. Firstly, 
the entropy discretisation technique is introduced to optimise the image 
attribute clustering method, and discrete values are used to represent the 
discretised data to eliminate the metric differences. Secondly, the original 
textile images are popularly mixed and enhanced according to the mixing 
parameter. And the visual feature intersection of the enhanced pattern is used as 
an object mask by using two-channel CNN output to map onto the original 
image to obtain an object-level image, and the features are enhanced by the 
channel attention mechanism. The simulation results show that the accuracy 
and average precision of the proposed method have a mean value of 83.59% 
and 91.36%, respectively. 
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classification; CNN; entropy discretisation. 
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1 Introduction 

In the era of big data, where patterns are gradually replacing text as the main content of 
the internet, the stylistic analysis of textile patterns has become an important research 
area in computer vision. Recently, as the field of computer vision has made great 
progress in textile modelling, recognition, and style analysis, this technology is crucial 
for realising textile applications from design to e-retail. At the beginning of the research, 
textile style classification methods relied too much on the background of professional 
knowledge (Shin et al., 2010), quantifying textile style characteristics based on 
information from expert interviews, identifying the connection between the cut shape of 
textile components and the overall style, and classifying textile styles based on the style  
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characteristics (Sun et al., 2011). However, as the production standards of the textile 
industry continue to improve, and the patterns and colours of fabrics become more and 
more complex, the speed and accuracy of manual classification are gradually out of line 
with the requirements of the textile industry (Yang et al., 2019). Therefore, automated 
textile classification instead of manual classification is an inevitable trend in the 
development of the textile industry, and it is important to accurately, efficiently and 
automatically classify complex patterned printed fabrics (Khan et al., 2016). 

Wen and Wong (2018) proposed that textile pattern styles can be recognised by 
computer, and defined style as an abstract description of objects with common 
characteristics. Xue et al. (2016) used eye tracking technology to obtain the most 
influential textile style features, and combined with fuzzy mathematical theories to 
achieve the establishment of a style classification model, but the categorisation is not 
satisfactory Kose et al. (2022) offered an autonomous classification algorithm for textile 
styles based on the autonomous developmental network (AND), but it is not suitable for 
textile pattern data. Ngo et al. (2021a) designed a textile style similarity matching 
algorithm based on gradient analysis method. In recent years, with the continuous 
maturity of deep learning technology, neural networks stand out in the field of textile 
pattern classification. Jeyaraj and Nadar (2019) proposed an improved retrieval algorithm 
for textile pattern classification based on deep learning, which has a low classification 
accuracy. Ngo et al. (2021b) investigated a textile pattern classification method based on 
hypergraphs, which achieves the capture of global information of the embedding layer 
and an approximate representation of class distribution. Koulali and Eskil (2021) 
suggested a method to automatically extract, identify and classify different textile style 
features using convolutional neural networks (CNN) to achieve the textile pattern 
classification task, but the classification labels are missing. 

Attributes achieved knowledge migration between visible and invisible classes, 
providing an effective solution to the problem of missing category labels. Attribute 
clustering is the grouping of data objects based on similarities, through clustering we can 
understand the data better and discover hidden patterns and structures in the data. Xu  
et al. (2011) used k-means to cluster similar features and used CNN to build a textile 
pattern style classification model. Kim et al. (2021) identified rough shared attributes 
from a textile pattern database, matched long-term trends to shared attributes, and 
achieved the clustering of shared attributes, but the feature extraction is insufficient. 
Balan and Devi (2012) clustered labels to sample attributes for classification by exploring 
the constructive model of textile patterns. Celani et al. (2024) performed density peak 
clustering of internal and external attributes of textile patterns, which enhances the ability 
of predicting the future stylistic aspects. Lee et al. (2024) demonstrated experimentally 
that some of the popular attribute clustering techniques do not consistently improve the 
performance of pattern classification and are used for feature differences between 
samples, resulting in low classification accuracy. 

Popular hybrid enhancement is to mix different samples together for training, and for 
each sample one or more data enhancement operations are randomly applied to get the 
enhanced samples. This technique solves the problem of different data labels and 
different distributions. Zhao et al. (2021) completed the textile pattern classification task 
by using two modules, self-channel interaction and contrast channel interaction, to 
enhance the discriminative features learnt by each channel. Zhang et al. (2023) processed 
the original textile patterns using Mixup enhancement technique, and the processed 
patterns were inputted into the generative adversarial network to classify them, to 
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improve the classification accuracy of the textile patterns. Liu et al. (2024) used Mixup 
enhancement technique to train textile patterns, which are sequentially cropped with a 
crosshair at a random location, take the corresponding parts for splicing, and input them 
into a CNN for classification, but not highlighting key features. 

Recent work by Hussain et al. (2020) has demonstrated the effectiveness of deep 
learning models, specifically the residual network (ResNet-50), for the classification and 
recognition of woven fabric textures. This study highlights the robustness of deep 
learning approaches in dealing with variations commonly encountered in textile pattern 
classification tasks. Moreover, Riba et al. (2020) have proposed an automatic sensing and 
sorting approach based on infrared spectroscopy (ATR-FTIR) for post-consumer textile 
waste. This method allows for the automatic classification of unknown fibre samples with 
100% accuracy and high speed, without the need for any prior analytical treatment of the 
textile samples. 

According to the analysis of the current research status, although the existing textile 
pattern style classification methods have achieved certain results, they still have the 
issues of insufficient accuracy and high classification error. In addition, there are very 
few publicly available datasets involving textile patterns, and there are no datasets that 
separately address pattern style and colour. To address the above issues, this article 
designs a textile pattern style classification method relied on popular hybrid enhancement 
and attribute clustering. Firstly, the image attribute clustering method is optimised to use 
discrete values to represent the discretised data. Then two convolutional blocks output the 
feature intersection set of the enhanced pattern as an object mask to generate an  
object-level image, which effectively reduces the interference caused by the complex 
background and is feature-enhanced by the channel attention mechanism. Next, the style 
attributes are clustered and mined using an optimised attribute clustering algorithm to 
obtain the corresponding pseudo-tagged features. Finally, the pseudo-features generated 
from the visual features and the style attributes are co-trained with softmax classifiers to 
achieve label prediction for textile patterns. Experimental results show that the proposed 
method has high accuracy and low classification error, which validates the effectiveness 
of the proposed method. 

2 Theoretical analysis. 

2.1 Popular hybrid enhancement techniques 

The popular hybrid image data enhancement method generates new training samples by 
mixing two or more samples and their labels at a specific ratio, which is an effective 
strategy to improve the generalisation ability of the model (Ullah et al, 2020). Typical 
examples of this technique include Mixup and CutMix. Their counterparts are shown in 
Table 1. 
Table 1 Comparison of mixup and CutMix 

Features Mixup CutMix 
Usage of full image region Yes Yes 
Regional dropout No Yes 
Regional dropout Yes Yes 
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1 The Mixup method (Liang et al., 2018) is a linearly interpolated image mixing 
method that generates new training samples by mixing two random samples and 
labels at a specific scale. Let x1 and x2 be the two input images, y1 and y2 be 
corresponding labels, and η be a randomly selected value from a beta distribution 
Beta(β, β). Mixup generates a new image x′ and label y′. 

1 2

1 2

(1 )
(1 )

x x η x
y

η
yηy η

= + −
= + −

′
 ′

 (1) 

2 The CutMix method (Jamshidi et al., 2023) generates a new sample by directly 
replacing a part of an image with the corresponding area of another image. Let A be 
the area randomly cropped from x1, and μ be the area ratio of area A to x1. The new 
image x′ and label y′ generated by CutMix. 
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1 2
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 ′ + −

=
=

 (2) 

This approach not only preserves the original features of the mixed samples, but also 
introduces new feature variations that allow the model to better learn the feature 
distribution of the samples. 

2.2 Convolutional neural network 

The CNN performs convolutional operations on the input image several times to extract 
image features. As implied in Figure 1, a CNN consists of five parts: input layer, 
convolutional layer, pooling layer, fully connected layer and output layer. Except for the 
input layer and the output layer, the other three layers have the role of feature extraction 
(Mi et al., 2022). In the application area of textile pattern style classification, CNNs are 
often used for feature extraction of patterns to mine the deeper features within the pattern. 

Figure 1 The architecture of CNN 
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In CNN, the convolutional and pooling layers are generally connected alternately, in the 
form of convolutional level, pooling level, convolutional level, and so on. Since each 
neuron in the output feature map of the convolutional layer is locally connected to its 
input, the input value of the neuron is weighted and summed by the corresponding 
connection weights and local inputs, and then added with the offset value in the network, 
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which is equivalent to the convolution process. The fully connected layer is usually 
located after the last level of convolution and pooling, and the output of the kth layer of 
the fully connected level is given by the following equation. 

( )1k k kkx f v x a−= +  (3) 

where xk denotes the input to the kth convolutional level, vk denotes the weights of the 
convolutional kernel, and ak denotes the bias coefficients 

3 Image mixture attribute clustering based on entropy discretisation 

For the goal of eliminating the difference between the similarity measures of numerical 
and categorical attributes in image mixture attributes, entropy discretisation technique 
(Norris et al., 2011) is introduced to represent the discretised data using discrete values, 
thus using a similarity measure (Li et al., 2004) to measure the similarity between the 
objects and eliminating the difference in the metrics. 

Let the image mixed attribute dataset D = {x1, x2, …, xn}, n be the number of objects, 
and the object ( )1 2, ,..., ,q

i i i ix x x x=  where q is the number of attributes, and the number of 

numerical and categorical attributes are Nr and Nc, respectively, satisfies q = Nr + Nc. d(xi, 
xj) is the distance between objects xi and xj, and dr(xi, xj) is the distance between xi and xj 
for categorical attributes. 

1 Use entropy to divide the numerical attributes in D into discrete intervals, and select 
the maximum value of the interval as the discrete value, i.e., f((a, b]) = b, (a < b), 
and (a, b] are the intervals divided by the discretisation algorithm. If a continuous 
attribute with value range [value1, value2] has z non-repeating attribute values value1 
< value2 < … < valuez, initially divide the intervals so that each interval contains one 
non-repeating attribute value, (vlue1–ξ, value1], (vlue1–value2], (valuez–1, valuez],  
(∀ξ > 0). 

Remember the number of intervals as g, 1 ≤ g ≤ n, n is the total number of samples, 
according to the definition of entropy (Samorodnitsky, 2016) calculated entropy is 
G(g), as implied in equation (4), where numi indicates the number of values 
corresponding to each interval. Then select two adjacent intervals to merge, so that 
G(g)–G(g–1) is the minimum, if the interval before and after the merger makes 
G(g)–G(g–1) the minimum more than one pair, then randomly merge a pair, and 
reset the division point, and then iterate on this step, the target function as implied in 
equation (5). 

2
1

( ) log
g

i i

i

num numG g
num num=

= −  (4) 

0 0( ) ( 1) ( ) ( )( 1)F g g G g G g g= − − −  (5) 

when F(g–1) ≤ F(g) is satisfied the iteration is stopped, the interval division point is 
saved and the maximum value of the interval is selected as the discrete value. 
Equation (5) in g0 is the number of intervals divided for the first time, G(g0) is the 
entropy of the interval divided for the first time. 
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2 Randomly select k objects from the discretised D as the initial cluster centres. 
Initially, the cluster centres are randomly selected, and when iterating, the attribute 
value of each attribute with the largest frequency in the cluster is selected as the new 
cluster centre, and the iteration is stopped when the objective function is satisfied, 
the objective function of the proposed attribute clustering algorithm is defined as 
follows. 

( )
1 1

( , ) ,
k n

i i l
l i

F W C w d x c
= =

=  (6) 

where 
1

{0,1},1 ,1 , 1
l

ki kik
w k l i n w

=
∈ =    , l denotes the number of clusters, 

W is the {0, 1}-subordinance matrix of a n × l, wki = 1 denotes the ith data object 
classified into the kth class, and C = (c1, c2, …, ck) is the centre of the kth class.  
d(xi, ci) is computed as follows, where σ denotes the Euclidean distance between two 
objects. 

( ) ( )1
, ,

q p p
i l i lp

d x c σ x c
=

=  (7) 

3 Measure the distance of each object from the cluster centre and classify each object 
into the cluster with the smallest distance. 

4 Recalculate the cluster centre s and select the attribute value with the highest 
frequency among the data attributes in each cluster as the attribute value of the new 
cluster centre. 

5 Repeat steps (3) and (4), and the algorithm ends when the objective function F does 
not change. 

4 Textile pattern style classification based on popular hybrid enhancement 
and attribute clustering 

4.1 Popular mix of textile patterns enhanced 

Focusing on the issue that the samples of traditional classification methods are prone to 
uneven distribution and missing markers, firstly, the original textile images are popularly 
mixed and enhanced according to the mixing parameter, and secondly, the intersection set 
of visual features of the two convolutional blocks outputting the enhancement pattern is 
used as an object mask, which is mapped to the original image for cropping to obtain the 
object-level image, and its features are enhanced through the attention mechanism. Based 
on this, its style attributes are clustered and mined to generate style attributes. Finally, the 
pseudo-features generated by visual features and style attributes are used to jointly train 
softmax classifiers to achieve the prediction of labels for textile patterns. The designed 
model is shown in Figure 2. 
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Figure 2 The model of the suggested textile style classification method (see online version  
for colours) 
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In the popular hybrid enhancement technology, the original textile pattern is enhanced by 
a technology combining Mixup and CutMix, which randomly selects whether to cut and 
exchange local regions according to specific mixing parameters. If the clipping operation 
is not performed, the two samples are directly fused to generate a new mixed pattern; if 
clipping is performed, the local regions clipped from the two patterns will be replaced 
with each other to form a new feature combination, thus improving the generalisation 
ability of the model and reducing the over-fitting phenomenon. This enhancement 
method can effectively increase the diversity of training samples and improve the 
performance of classifier. 

• Mixup and CutMix have some drawbacks in the classification of textile pattern 
styles: Mixup introduces unnatural pseudo-pixel information during the mixing 
process, and CutMix provides incorrect labels, which tends to confuse the network 
during the training of the network. Based on these two methods, this paper proposes 
an optimised popular mixup enhancement method to enhance the original textile 
pattern data, and control Mixup and CutMix by sampling probability, in order to help 
the model generalise to the unseen data better, reduce overfitting, and improve the 
classification effect of the model. The method is divided into two phases: the fusion 
of sample feature maps and the replacement of local regions with each other, and the 
adoption probability of Mixup and CutMix is controlled by the mixing parameter. 

• The first stage: the original textile pattern is randomly flipped, scaled, dithered, 
colour gamut changed and other operations are performed. After the enhanced 
samples are inputted into the feature network, the two randomly selected samples are 
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not operated with the probability of μ, and some pattern blocks of the same position 
and size are cut out from the two randomly selected samples with the probability of 
1–μ. The first stage: the original textile pattern is randomly flipped, scaled, dithered, 
colour gamut changed and other operations are performed. 

• The second stage: If no clipping operation is performed on the two samples, they are 
fused to generate a fused pattern, and then continue to be sent to the next feature 
layer for training; if clipping operation is performed on the two samples, the local 
patterns cropped from the two patterns are replaced with each other to generate 
another hybrid feature map, and then continue to be sent to the next feature layer for 
training. The sample pattern fusion and local region replacement are shown in 
equation (8) and equation (9), respectively. 

( ) ( )( ) ( ) ( ), (1 )hybrid k i k j k i k jλ f x f x f x f x= + −β β  (8) 

( ) ( )( ) ( ) ( ), (1 )replace k i k j k i k jλ f x f x M f x M f x= + −   (9) 

where fk(x) is the mapping from the input data to the kth layer, β is a parameter that 
follows the χ-distribution with a value in the range of [0, 1], M∈{0, 1}W × H is a binary 
mask that indicates the positions of deletions and fills in the pattern, W and H represent 
the width and height of the image, respectively, and   is a pixel-by-pixel multiplication. 

4.2 Visual feature extraction and enhancement of textile patterns.  

The popular hybrid-enhanced textile pattern obtained above is fed into the feature 
extractor and visual features F0 are obtained from the last convolutional layer, all the 
feature maps in F0 are summed in the channel dimension to obtain the feature map A. 
After that, the average value of A is computed to obtain ,A  and finally, a mask mapping 
B1 is constructed to represent regions larger than the average activation value. 

1 1

0 0
( , )

H W

a b
A a b

A
H W

− −

= ==
×

   (10) 

1
1,  ( , )
0,

if A a b A
B

otherwise
 >

= 


 (11) 

According to the mask mapping the pattern samples are transformed into a multilayer 
object, which is located in the maximally connected component, so the mask mapping B2 
of the output of the penultimate convolutional block is obtained by equation (10) and 
equation (11). Finally, the intersection B of B1 and B2 is obtained. 

1 2B B B= ∩  (12) 

By mapping the largest connected region in mask B, an object-centred object image is 
obtained, filtering out noisy background regions and reducing feature redundancy. The 
object feature map Fin∈RW×H×C, where C represents the number of channels. Take the 
feature map Fin as the input to the CNN and perform global maximum pooling and global 
average pooling operations to obtain two W × H × 1 feature maps respectively. 
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( )iaνg nF Aνg ool FP=  (13) 

( )imax nF Max ool FP=  (14) 

Then, these two object feature maps are concatenated according to the channels. After 
that, the number of channels is reduced to 1 by convolution operation, and finally, the 
spatial attention map S is generated by sigmoid activation function, which represents the 
most salient region in the feature map F. After obtaining the spatial attention map S, it is 
multiplied element-wise with Fin to get the final enhanced feature map X. 

( ) [ ]( )( )7 7
1 ,avg m xin aX M δ f coF ncat F F×= =  (15) 

where δ is a sigmoid function and f7×7 denotes a convolution operation with a convolution 
kernel size of 7×7. 

4.3 Stylistic attribute clustering and style classification of textile patterns 

The augmented object feature graph obtained in the previous section contains feature 
representations of all unlabelled data, in this paper, an optimised attribute clustering 
algorithm is applied to cluster mine the mixed attributes in the object feature graph and 
group these unlabelled features to obtain the corresponding pseudo-labelled features. 
Samples close to the class centre of mass are labelled as reliable and are merged into the 
labelled data to update the base model for the next iteration. Finally, the pseudo-features 
generated from visual features and style attributes are used to jointly train softmax 
classifiers to predict the labels of textile patterns. 

From the Section 3, it is clear that the style mixture attributes in the textile feature 
map contain numerical and categorical attributes, which need to be clustered separately. 

1 Numerical attribute clustering. Firstly, find a core object p from the unidentified 
objects in D. Take p as the starting point to generate CoreRepSet, which forms a 
cluster with all its immediate neighbours until all the objects in D have been 
processed, and finally assign all the unprocessed data in the dataset to its class 
according to the density reachable. 

2 Categorical attribute clustering. Assuming that C = (C1, C2, …, Cl) is a division of D 
and Ci is one of the classes, first calculate the entropy of each object in D as bellow. 

( ) ( )( )( )21 1
( ) | log |

i

i
i ix

l d

i i XD

nE C p x x C p x x C
n= = ∈

 = − = = 
     (16) 

Then, from the unidentified data objects in D, select the value with the lowest 
entropy as the clustering centre p, mark the cluster ID, and with p as the clustering 
centre, use equation (17) to calculate the data in the unidentified objects whose 
similarity with p is greater than β to be added to this cluster, and mark all the 
processed data objects. Repeat the process until all attributes are processed. 

ijd
ijS e−= β  (17) 

where dij is the distance between xi and xj. 
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3 According to the numerical attribute cluster membership division CN = {Cn1, Cn2, …, 
Cnl} and categorical attribute cluster membership division CC = {Cc1, Cc2, …, Cck} 
obtained in (1) and (2). Take any one cluster from CN and CC, its intersection set  
ωt = Cni ∩ Cci, and concatenation set πt = Cni ∪ Cci. Set π(i, j) = πi ∩ πi, as the 
threshold of merging clusters, the specific steps of clustering are as follows. 
Step 1 Take any clusters Cn and Cc from CN and CC, respectively, and compute the 

intersection set wi and the union set πi. 
Step 2 Iterate over all combinations of intersection sets ωt containing more than two 

elements, and add the union set πi of these two clusters to the empty set Φ. 
Step 3 Calculate the ratio of the elements of the intersection between the two sets in 

Φ to θ, and arrange them in descending order. 
Step 4 If θ > ξ, then merge πi and πj, and update Φ, skip to step 3; otherwise if  

π(i, j) ≠ ∅ exists, then if |πi| > |πj|, then πi = πj–π(i, j), otherwise πj = πi–π(i, 
j), update Φ, skip to step 3; otherwise if there is data that does not belong to 
any of the sets in Φ, create a new set for the data independently. 

4 All labelled data in Φ is used as pseudo-feature Fe generated by the style mixing 
attribute, which is connected with visual feature F0 in the textile feature map to 
obtain F as an input to a softmax classifier to classify the style of textile patterns, and 
the value with the highest probability of scoring the highest score is the value of 
category labels, as shown below. 

{ }max
j

i j
Dx

y F x
∈

= ⊗  (18) 

where yi denotes the predicted value. In the training phase, the aim of the classifier is 
to minimise the softmax loss. The loss function of the classifier is represented as 
follows. 

( )log | *;iL E P y F ς= −     (19) 

where ζ denotes the parameters of the classifier and P(yi|F; ζ) denotes the probability 
that feature x is predicted to be correctly labelled. 

5 Performance testing and analysis 

5.1 Comparative analysis of classification performance 

In this paper, the computer configuration is Intel i7 8700 K CPU and NVIDIA GeForce 
GTX1080TI GPU, the operating system is Ubuntu16.04, and the PyTorch deep learning 
framework is adopted, and the batch size is set to 2 in the experiment, and the number of 
training steps is 550,000, and the initial learning rate is 0.002, and the attenuation 
coefficient is 0.000 1. This article uses the textile patterns collected in the literature 
(Hussain et al., 2020) as the dataset, which contains 724 textile patterns, which are 
labelled and classified according to the pattern characteristics, with a total of 8 categories: 
plaid, stripe, print, polka dot, solid colour, zebra print, leopard print and embroidery. In 
this dataset, 65% is selected as the training set, and 20% and 15% are selected as the 
validation and test sets, respectively, to experiment and analyse the suggested method 
OURS and the comparison method. 
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This article compares and analyses Er_MCA (Celani et al., 2024), Cl_GAN (Zhang  
et al., 2023) and OURS methods using Accuracy (Acc), mean accuracy mean (MAP) 
(Vujović, 2021), mean absolute percentage error (MAPE), and root mean square 
percentage error (RMSPE) (Guillera‐Arroita et al., 2017). MAP is based on the combined 
consideration of precision and recall, which is obtained by weighted average of average 
percent correct (AP) for different categories of tests. MAPE measures the relative 
difference between the actual value and the predicted value. It is the average of all 
absolute errors, expressed as a percentage. RMSPE takes the absolute value of the 
percentage error for each sample, then averages it, and finally takes the square root. This 
metric is useful for assessing the accuracy of classification models on percentage or 
proportional data. 

The experimental outcome are implied in Table 2. The MAP and Acc of OURS 
increased by 12.52% and 8.85% respectively compared to Er_MCA, and increased by 
5.25% and 4.24% respectively compared to Cl_GAN. MAPE and RMSPE of OURS are 
11.63% and 7.36% lower compared to Er_MCA, and 4.19% and 2.29% lower compared 
to Cl_GAN. Cl_GAN achieves pattern mixup enhancement by Mixup technique, but it 
does not carry out in-depth attribute clustering mining for textile patterns, which leads to 
a poorer classification efficiency than OURS, which can effectively improve the 
classification accuracy, and also improves the problem of large error, and has a stronger 
classification efficiency. 
Table 2 Classification performance of different textile pattern classification methods 

Method MAP/% Acc/% MAPE/% RMSPE/% 
Er_MCA 71.07 82.51 14.98 8.92 
Cl_GAN 78.34 87.12 7.54 3.85 
OURS 83.59 91.36 3.35 1.56 

Figure 3 Comparison of losses in different methods of classifying textile pattern styles  
(see online version for colours) 
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The loss pairs for different classification methods are implied in Figure 3, where the loss 
value decreases rapidly in the first 40 iterations, and the computational loss increases as 
the number of iterations increases. Then, the loss values of the three methods slowly 
oscillate downward and converge, and the final loss value stabilises at about 0.3, and the 
training result achieves the expected effect. The losses of Er_MCA, Cl_GAN and OURS 
are close to each other, with the difference that the loss of OURS is significantly lower 
than that of Er_MCA and Cl_GAN in the first 40 iterations. OURS combines the 
advantages of Er_MCA in balancing difficult and easy samples and Cl_GAN in 
strengthening the linkage between classes, in which the best classification results are 
achieved when ζ = 0.5. 

5.2 Attribute clustering effect analysis 

For the purpose of better distinguishing the classification results, this article visualises the 
clustering effect of OURS and Er_MCA methods by randomly selecting 150 patterns of 5 
categories in the dataset, as implied in Figure 4. In Er_MCA method, the boundary of 
each category is less precise and compact, especially when the seed is 5, the distributions 
of the features of the different categories overlap each other. The OURS method clusters 
the numerical and categorical attributes in the textile pattern mixture attributes separately 
by discretising the entropy, eliminating the metric differences, and the category features 
are contracted a bit more compactly. 

Figure 4 Clustering visualisation results for methods ours and Er_MCA (see online version  
for colours) 

 

The visualisation shows that attribute clustering can help the model to better focus on the 
parts of the model that are conducive to classification. However, the visualisation also 
shows that some categories are not well identified by the model, which may be related to 
the quality of the data, and therefore the quality of the data is also very important for the 
performance of the model. The higher the quality of the data, the better the clustering, 
and then the more efficient the classification. The compactness of the visualisation map 
and the experimental results demonstrate that there is a relationship between the 
compactness of the training set and the classification effect of the test set: the more 
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compact the samples of the training set are in the mapping space, the better the 
classification effect is. Er_MCA clusters textile pattern attributes by density peak 
clustering with higher complexity without further analysing the features of the patterns, 
resulting in poor clustering results. Cl_GAN uses GAN to classify textile patterns without 
further considering the attributes of the individual categories, and thus the clustering 
results are also not as good as those of OURS. Therefore, the OURS method performs 
better under different seeds compared to the Er_MCA method. That is, the suggested 
method helps to form more compact clusters and classes with distinct boundaries. 

To provide a comprehensive understanding of the proposed method, it is essential to 
highlight the advantages and limitations of both Mixup and CutMix data augmentation 
techniques in the context of textile pattern style classification. While Mixup generates 
interpolated images by linearly combining pairs of samples and their labels, it introduces 
unnatural pixel information that can confuse the network during training. On the other 
hand, CutMix replaces a random region of one image with a corresponding region from 
another image, which can lead to incorrect labels if not properly handled. These 
drawbacks are addressed in the proposed popular mixup method, which alleviates the 
overfitting situation and improves classification performance by controlling the mixing 
parameter and employing a two-stage process that combines sample feature maps and 
replaces local regions with each other. The optimised popular mixup method ensures a 
more natural representation of the data, thereby enhancing the robustness of the model. 
By leveraging the strengths of these techniques and mitigating their weaknesses, the 
proposed method achieves a classification accuracy of 91.36% and a MAPE of 3.35%, 
demonstrating its efficiency and effectiveness in textile pattern style classification. 

6 Conclusions 

Textile pattern style classification is the focus of computer vision field. There are many 
deficiencies in the current classification methods, so a textile pattern style classification 
method based on popular mixture enhancement and attribute clustering is proposed, 
which has the following advantages. 

1 The entropy discretisation technique is used to optimise the image attribute 
clustering method, and the discrete values are used to represent the discretised data, 
to measure the similarity between the objects, and to eliminate the differences in the 
measurements. 

2 The visual feature intersection of the augmented pattern is output using a  
two-channel CNN to generate an object-level image, which is augmented with 
features using an over-channel attention mechanism. 

3 An optimised attribute clustering algorithm is applied to cluster mine the style 
attributes in the object feature graph to obtain the corresponding pseudo-label 
features. The pseudo-features generated from visual features and style attributes are 
co-trained with Softmax classifier to achieve the label prediction of textile patterns. 

4 The proposed method has a classification accuracy of 91.36% and a MAPE of 
3.35%, which is more efficient in classification and better in clustering. 
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The prerequisite for the textile pattern style classification method proposed in this paper 
is that the pattern has been processed with noise, and in the future, this paper will focus 
on investigating the impact of image quality on the classification effect of the designed 
model and comparing the method of this paper with other state-of-the-art methods in 
deep learning and computer vision on several large-scale datasets to fully validate the 
effectiveness of the proposed method. 
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