Research on automatic recognition of electronic communication information anomalies based on fuzzy association rules Online publication date: Fri, 25-Oct-2024
by Ying He
International Journal of Reasoning-based Intelligent Systems (IJRIS), Vol. 16, No. 4, 2024
Abstract: In order to improve the accuracy and efficiency of electronic communication information anomaly recognition, this paper proposes the research of electronic communication information anomaly automatic recognition based on fuzzy association rules. Firstly, obtain electronic communication information, and perform attribute extraction, missing value filling, data de-duplication, and data synchronisation. Secondly, the membership matrix of the sample set is constructed, and the fuzzy grade of communication information is determined by fuzzy association rules to achieve the classification of electronic communication information anomaly types; then, K-means++ algorithm is used to optimise the selection of initial centroid. Finally, K-FKNN is used to complete the automatic identification of electronic communication information anomalies. The experimental results show that the anomaly information capture rate of this method is 100%, the recognition accuracy is 98%, and the recognition time is only 16 s.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reasoning-based Intelligent Systems (IJRIS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com