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Abstract: In order to ensure the reliability and safety of electric vehicles, a 
CEEMDAN-RF-SED-LSTM method for lithium ion power battery system is 
proposed. Taking the time interval of equal voltage charging as the indirect 
health factor, taking into account the influence of external interference and 
capacity regeneration phenomenon, the degradation trend of battery is obtained 
by variational mode decomposition (VMD). The improved recurrent neural 
network model – short and long time series (LSTM) is used to obtain the 
residual life prediction. Finally, the established model is compared with FNN, 
CNN, LSTM and other neural networks, which gives full play to the 
characteristics of SCN such as strong autonomy, fast convergence speed and 
low network cost. The performance of this method is tested with NASA dataset 
as the research object. The experimental results show that CEEMDAN-RF-
SED-LSTM model performs well in predicting RUL of batteries, and the 
prediction results have lower errors than that of a single model. 

Keywords: lithium ion battery; life prediction; configure the network 
randomly; incremental learning. 
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1 Introduction 

Lithium ion batteries are widely used in electric vehicles, energy storage systems and 
consumer electronics due to their long cycle life, high energy density and low cost (Zhu 
et al., 2022; Liao and Köttig, 2014). The lithium ion battery will cause the loss of active 
lithium and active materials after a long-term charge and discharge cycle, resulting in the 
capacity decline and energy decay of the lithium ion battery, which will shorten the 
remaining useful life (RUL) of the battery (Zong et al., 2022; Wang and Di, 2022). RUL 
prediction of lithium-ion battery is the basis for realising the maintenance of power 
battery system, and is of great significance for ensuring the safe and reliable operation of 
vehicles. The capacity and internal resistance are used as characteristic inputs to 
characterise the health status of the battery (Sulzer et al., 2021) It is difficult to measure 
capacity and internal resistance online through simple sensors. The current, voltage and 
temperature directly collected by the sensor are used as characteristic factors to predict 
the remaining life of the battery. The battery charging mode is usually constant current 
and constant voltage charging, which is relatively stable. Some studies show that with the 
aging of lithium-ion batteries, the time when the charging voltage rises to the upper limit 
of cut-off voltage gradually decreases (Shen et al., 2019). The charging voltage curve is 
used as the characteristic factor of the battery to predict the remaining life of the battery. 
In the actual work of the battery system, it is difficult to obtain a complete charging 
curve, such as the large-capacity electric bus battery system, the shallow-charged and 
shallow-discharged redundant satellite battery system, etc. The battery degradation 
process is characterised by the constant voltage charging time as the characteristic factor. 

The biggest advantage of the data-driven prediction algorithm is that it does not need 
to know the exact model of the battery, but only needs a certain amount of degraded data 
to complete. Therefore, the data-driven battery RUL prediction method is more popular 
and widely used, and gradually becomes the mainstream method of battery life prediction 
(Lv et al., 2022; Yu et al., 2022). The data-driven battery RUL prediction methods 
mainly include artificial neural network, support vector machine, support vector 
regression, particle filter, etc. The artificial neural network is designed to simulate the 
operation of the human brain nervous system, and it shines brilliantly in the battery life 
prediction problem because of its strong nonlinear processing ability, adaptability and 
self-learning ability (Zhang et al., 2022). However, the artificial neural network brings 
slow training and excessive resource consumption Problems such as weak generalisation 
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are also slowly emerging in the process of use, which has become a difficult point 
hindering its development in the direction of lithium ion battery life prediction. 
Fortunately, the emergence of incremental learning has gradually solved these problems. 

The deep neural network can be used to solve the above problems. The deep neural 
network (DNN) is constructed by using multiple nonlinear transformations to extract 
complex feature information from the input data. In recent years, several DNN-based 
SOC estimation methods have been proposed. In literature (Muenzel et al., 2015), the 
SOC estimator was constructed using the multi-layered perceptron (MLP) network and 
trained using the signals measured at different ambient temperatures. The results show 
that the trained model can reduce the estimation error of SOC. On the basis of this 
research, considering the advantages of long short-term memory (LSTM) in capturing 
time information in time series data, the literature; Ou et al., 2021) developed a SOC 
estimator based on LSTM to further improve the estimation accuracy, and achieved good 
results. As another variant of the recurrent neural network (RNN), the gated recurrent 
unit (GRU) neural network has also been applied to SOC estimation. Angenendt et al. 
(2016), and Zhang et al. (2021) introduced GRU structure into RNN network to improve 
the modelling ability of lithium ion battery nonlinear behaviour, and constructed two 
models using current and voltage signals as input to estimate SOC. However, the above 
documents do not consider the SOC estimation of lithium-ion batteries under variable 
operating conditions and will reduce the accuracy of SOC estimation under long time 
series signals. The above method considers the time series characteristics of lithium-ion 
battery data, and uses LSTM, BiLSTM and 1D CNN-LSTM to analyse lithium-ion 
battery data respectively. This paper combines the advantages of the above methods, uses 
1D CNN to mine the deep features of lithium-ion battery data, and combines BiLSTM 
bidirectional (past to future and future to past) analysis feature sequence, and proposes 
1D CNN-BiLSTM (Mansouri et al., 2017) hybrid neural network to realise RUL 
prediction of lithium-ion battery. This algorithm has the following innovations: 
1 LSTM has good prediction performance, but the limitation of the above methods is 

that the network model parameters of LSTM need to be randomly set by human 
experience, and the selection of different parameters training will directly affect the 
network model structure and prediction accuracy. Therefore, this paper proposes a 
method of using whale optimisation algorithm (WOA) to optimise the super 
parameters of LSTM network, which makes the established lithium battery residual 
service life model have better prediction effect and stability. Finally, select NASA 
public dataset to compare WOALSTM with standard LSTM algorithm, Elman 
algorithm and PSO-LSTM algorithm to verify the effectiveness of the proposed 
model. 

2 BiLSTM has rich time series analysis capabilities. Based on the forward LSTM 
analysis of input sequence, BiLSTM combines the reverse LSTM to carry out 
bidirectional processing of data to enhance the prediction accuracy of neural 
network. 

3 LSTM and GRU introduced a simple encoder-decoder mechanism to better learn the 
global time characteristics and remote dependencies of sequence data. The validity 
of the model was verified by using the public dataset of lithium ion batteries from 
NASA. The experimental results show that CEEMDAN-RF-SED-LSTM performs 
well in the RUL prediction of batteries, and the prediction results of the combined 
model with RF (Wang, 2021) and SED have higher accuracy. 
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2 Method and principle 

2.1 A.SOC estimation model of lithium ion battery based on EMD-GRU 

Based on the previous introduction of EMD and GRU algorithms, an estimation method 
of SOC based on EMD-GRU lithium-ion battery (Duan, 2021) is proposed, as shown in 
Figure 1. This method uses EMD algorithm to decompose the battery current signal, 
decompose the current into several current sub-sequences, and then combine the battery 
voltage and battery temperature fluctuations as the input of GRU neural network. After 
passing through the full connection layer network, the battery SOC is used as the output. 
The existing data are trained to obtain the model parameters. New current subsequences, 
voltage and temperature are introduced as network inputs to predict the SOC of the 
network. 

Figure 1 SOC estimation method of EMD-GRU lithium-ion battery (see online version  
for colours) 

 

The specific steps of SOC (Dufo-López et al., 2014) estimation of EMD-GRU  
lithium-ion battery are as follows: 

1 Data pre-processing. The accuracy of data determines the accuracy of the network 
model, collecting current, voltage and temperature xk = [Ik, Vk, Tk] and SOC data  
yk = {SOCk}, complete the correction of errors and missing data, and divide the 
training set and test set. 

2 Empirical mode decomposition. Use EMD to transmit current signal Ik. Divided into 
sub-current sequence set {I1k, I2k, …, Ijk}. In view of the large difference in the 
numerical units of the decomposed current sequence, the min-max normalised 
current subsequence set is used to scale the value to 0~1. 
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min
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max min
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Among, ikI ∗  is the normalised current subsequence set. 

3 Time series prediction of GRU model (Xiong et al., 2018). The GRU-based lithium 
ion battery SOC estimation model is established using the training set data. By 
setting the network structure and parameters, Adam is used as the network training 
optimisation algorithm, ReLU is used as the network activation function, and the 
mean square error (MSE) function is used as the optimisation objective function, and 
then the optimal SOC estimation model parameters are obtained through training 
(Yang, 2021). 

4 Model evaluation. The test set is used as the input of the GRU model to obtain the 
estimated SOC value, and then the accuracy of the model is measured by the error of 
the predicted value and the actual value. The mean absolute error (MAE), MSE, and 
root mean square error (RMSE) are selected. The calculation formulas are: 

1

1 ˆ| |
n

i i
i

MAE y y
n =

= −  (2) 

( )2

1

1 ˆ |
n

i i
i

MSE y y
n =

= −  (3) 

( )2

1

1 ˆ |
n

i i
i

RMSE y y
n =

= −  (4) 

Among, ˆiy  for no i predicted values; is the actual value of; Is the forecast quantity. 

2.2 Based on dropout_ remaining of MC LSTM 

2.2.1 Life prediction model 
As a new time series prediction method, the long and short time series (LSTM) neural 
network overcomes the phenomenon of gradient explosion and gradient disappearance of 
the traditional cyclic neural network. The LSTM neural unit is used to replace the 
traditional cycle time network unit. LSTM neural network has long-term memory ability. 
LSTM neural unit mainly includes forgetting gate, output gate and input gate. Its formula 
is as follows. 

[ ]1t xi t hi t ii σ ω x ω x b−= + +  (6) 

1t xf t hf t ff σ ω x ω x b−= + +    (7) 

[ ]1t xo t ho t oo σ ω x ω x b−= + +  (8) 

( )1 1tanht t t xc t hc t cc f c ω x ω h b− −= + + +  (9) 
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Among it, ft, Ot, Ct. They represent input information, forgotten information, output 
information and network status, ω indicates the weight parameter, b indicates the offset 
parameter, σ [•] indicates the sigmoid activation function. When building LSTM model, a 
large number of neural units and super parameters are introduced, which is easy to cause 
over-fitting phenomenon. In order to reduce the over-fitting phenomenon, the dropout 
technique was proposed. Therefore, this article uses dropout_ LSTM (Aykol et al., 2021) 
establishes a battery health prediction model. 

In order to characterise the uncertainty of RUL prediction of battery remaining life 
and avoid the over-fitting phenomenon of the model, drop out_ MC is proposed to predict 
the remaining life. Bayes (Liu, 2021) variational inference is introduced to obtain the 
uncertainty of RUL prediction, while Bayes inference process is complex and the 
traditional neural network structure needs to be greatly improved, which makes the 
calculation of this method complex, thus limiting its application. Deshpande et al. (2012) 
proposed that the dropout neural network is approximately equivalent to the traditional 
neural network variational inference, while combining MC sampling technology to obtain 
the uncertainty of RUL prediction (Xiong et al., 2018). Based on the nonlinear mapping 
function, define a covariance function, namely 

( ) ( )( , ) ( ) ( ) T TG x y p ω p b σ ω x b σ ω y b dωdb=  + +  (10) 

Among p(ω) and p(b) represent multidimensional normal distribution and  
one-dimensional normal distribution respectively; ω and b represents the weight matrix 
and offset. Use k the sub-MC sampling technique is used to obtain the finite rank 
covariance function, as shown in equation (10), where k indicates the second MC 
sampling. 

( ) ( )1
1( , ) K T T

k k x k kG x y σ ω x b ω y b
K == + +


 (11) 

about W1, W2, b. The approximate modelling based on Gauss mixed distribution is carried 
out, and the variational lower bound ELOB is obtained through MC sampling, namely 

( ) ( )1 1 2 1 2 1 2
ˆˆ ˆlg ( | , , , ) [ , , || , ,N n n n

MC n n nELOB p y x W W b KL q W W b q W W b=
 = −   (12) 

where, KL [•] represents divergence, and represents multidimensional vector obtained by 
linear combination of multidimensional normal distribution and Bernoulli distribution. 
Then the lower bound of evidence (ELOB) is the same and the correlation distribution is 
as follows 

2 2 2
21 2 2

1 1ˆN i
MC n n n i

pELOB y y M m
N τN τN=∝ − − − −  (13) 

where, represents the remaining life of the equipment, represents the regression value of 
the neural network model, N indicates the number of samples, τ is the model precision, 
probability pi and matrix Mi as a matrix variation parameter. It can be seen from equation 
(13) that the approximate variational inference can be approximated by adding dropout to 
the neural network. For the specific derivation process and detailed parameter definition, 
refer to the published Xiong et al. (2018) such as Menglei et al. (2020). The framework 
of the proposed method is shown in Figure 2. 
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Figure 2 Dropout_ MC LSTM residual life prediction framework (see online version for colours) 

  

In this paper, 3.9~4.1 V constant voltage charging interval is used as the indirect health 
factor, and the effectiveness of the indirect health factor is verified by Spearson 
correlation analysis. This paper proposes dropout_ MC LSTM model to establish a health 
state prediction model (Qin et al., 2020). Through 1,000 times of MC sampling, the 
uncertainty characterisation of the residual life prediction results of lithium ion batteries 
was finally obtained and the 95% confidence interval was obtained. The high accuracy of 
the proposed model is verified by comparing the proposed method with the limit learning 
machine ELM and the nonlinear autoregressive neural network NARX of the existing 
methods. 

2.3 Whale optimisation WOA-LSTM algorithm  

WOA is a new swarm intelligence optimisation algorithm proposed by researchers such 
as Mirjalili Li (2019) of Griffith University in Australia in 2016. It is a meta-heuristic 
optimisation algorithm that simulates the predatory behaviour of humpback whales, and 
introduces the bubble net hunting strategy (Yan et al., 2022). In the WOA algorithm, 
humpback whales can accurately identify the position of prey and surround it. The 
position of each humpback whale can represent a feasible solution. The algorithm mainly 
includes three stages: encircling prey (Dai et al., 2019), bubble-net attacking and 
searching for prey (Zhang et al., 2019). 

Where p < 0.5 and |A| < 1 to surround the prey, p is the random number generated in 
the range of [0, 1], A is the random number generated in the range of [0, 1], N, the 
position of each whale represents a feasible solution X. Humpback whales can identify 
the location of prey and surround it because the location of the optimal solution in the 
search space is not a priori known, so WOA. The algorithm assumes that the optimal 
whale individual position of the current population is the target prey or the nearest 
position to the target prey. After defining the optimal search location, other whale 
individuals will try to approach the optimal location of the current population, and the 
updated location formula is expressed as: 

* ( )D CX X t= −  (14) 

*( 1) ( )X t X t AD+ = −  (15) 
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where D is the distance between the current whale individual and the optimal position; T 
is the current iteration number; X(t) is the position vector of the current whale individual; 
X* is the current optimal solution position vector Where coefficient vector A, C The 
calculation formula is 

2A ar a= −  (16) 

2A r=  (17) 

In equation (18): 
max

22 ,ta
t

= −  a linear reduction from 2 to 0; R is a random real number 

in [0, 1]; Is the maximum number of iterations. 

p ≥ 0.5, execute the bubble net attack hunting behaviour. When a whale is hunting, it will 
swim to its prey in a spiral motion. The mathematical formula for this behaviour is 

( 1) cos(2 ) ( )blX t De πl X t∗+ = +  (18) 

In equation (19): D = |X*–X(t)| Represents the distance between the current optimal whale 
individual position and prey; b is a constant used to define the shape of the helix; l is  
(–1, 1) a random number in the interval (Anselma et al., 2021). The whale adopts spiral 
mode, and needs to shrink the enclosure while swimming to the prey. Therefore, in the 
synchronous behaviour model, it is assumed that 1–Pi the probability of updating the 
position and existence of whales through the spiral model Pi the probability of the 
algorithm is to select the shrinking and enveloping mechanism. The mathematical model 
expression of the algorithm is 

( )
( 1)

cos(2 ) ( ),
i

bl
i

X t ADp P
X t

De πl X t p P

∗

∗

 − <+ = 
+ ≥

 (19) 

In equation (20): p is a random number of [0, 1], usually p = 05. When whales hunt, the 
closer they are to the prey, the smaller the value of a will be, and the smaller the value of 
A. In the iterative process of the algorithm, because the value of a is a vector that linearly 
decreases from 2 to 0, the value range of A is a random value of [a, – a]. When the value 
range of A is within [–1, 1], it means that the current position of the whale is anywhere 
between the original individual and the optimal individual, which indicates that the whale 
is approaching the optimal individual after the updated position. The algorithm sets that 
when A < 1, whales attack their prey. 

When p < 0 5 and A > 1, execute random search for prey. First, select a whale 
position randomly, update the position of other whales according to the selected position, 
force the whales to deviate from the prey, and then find a more suitable prey behaviour, 
which not only strengthens the exploration ability of the algorithm, but also enables the 
WOA algorithm to conduct global search. Its mathematical model expression is 

randD CX X= −  (20) 

( 1) randX t X AD+ = −  (21) 

Among: Xrand Is the random position vector of individuals selected from the current 
population; X(t + 1) is the position of the current whale in the (t + 1) generation. 
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The parameter value of LSTM (Wang et al., 2019) model will have a great impact on 
the fitting ability of the model. Greff et al. studied the setting of LSTM-related 
parameters. The experimental results show that the number of hidden layer nodes and 
learning rate are the key parameters for the network setting, and the selection of the 
parameters is generally related to the characteristics of the data. Too large or too small 
will not necessarily achieve good prediction results. In order to find the optimal 
hyperparameters of the RUL prediction model for lithium batteries, WOA was used to 
optimise the three superparameters of LSTM, namely, the number of nodes L1, L2 and 
the learning rate Ir of LSTM (Somayaji et al., 2020) hidden layer. Take these three key 
parameters as the optimisation features, and use WOA algorithm to adjust and optimise 
the LSTM model to make the network structure model more match the data 
characteristics of lithium ion battery. In the hidden layer of LSTM, the output of each 
layer will be used as the input of the next layer, and finally the data will be output 
through the dense full connection layer (Chen and Lu, 2019). The algorithm steps of 
WOA-LSTM model are as follows: 

Step 1 Data pre-processing. Firstly, the experimental data of lithium-ion battery is  
pre-processed, and the standardisation of data processing is the basis of 
modelling. Use the mapminmax function to map data to [–1, 1]. Secondly, the 
standardised experimental data is divided into training sets and test sets, and the 
experimental data is normalised. 

Step 2 Initialise WOA algorithm parameters. Set the population number N, initialise the 
parameters (i.e., a, r, b, l, p), and randomly generate the position X according to 
the WOA. 

Step 3 Determine the parameters and scope of optimisation in the LSTM network 
model, and take the number of nodes and learning rate of the two hidden layers 
in the network model as the object of optimisation. 

Step 4 Calculate the individual fitness according to equation (7) and equation (8), save 
the optimal individual and the optimal position, and update A and C according to 
equation (9) and equation (10). 

Step 5 generates a random number p, when p ≥ 0 At 5, update the position according to 
equation (11); when p < 0 5 and A > 1, update the position according to  
equation (14). 

Step 6 Judge whether the conditions for terminating iteration are met. If the conditions 
for terminating iteration are met, the optimal value of the optimisation objective 
can be obtained; otherwise, return to step 2 to continue the operation until the 
termination condition is met. 

Step 7 Reassign the optimised super parameters to the LSTM model, and train and 
predict through lithium battery data. The super parameters of LSTM neural 
network are optimised by WOA optimisation algorithm to minimise the MSE of 
the test set. The prediction block diagram of WOA-LSTM is shown in Figure 3. 
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Figure 3 WOA-LSTM model prediction flow chart 

 

2.4 1D CNN-BiLSTM prediction model prediction 

The prediction process of 1D CNN-BiLSTM model is shown in Figure 4. First, divide the 
lithium-ion battery capacity data into test sets and training sets according to different 
prediction points, and normalise the lithium-ion battery capacity data with MinMax 
(Zeng et al., 2019). Secondly, initialise various parameters of the model, then calculate 
and analyse the partial derivatives of the hidden layer, and finally obtain the prediction 
model of the remaining cycle life of the battery. 

In this paper, NASA's 18650 model B0005 (B5) and B0006 (B6) lithium-ion battery 
dataset (Wang et al., 2017) is selected as the experimental data. The cycling charging and 
discharging process of NASA lithium-ion batteries is carried out in a constant 
temperature environment. 5. The capacity decline curve of B6 lithium-ion batteries is 
shown in Figure 5. 
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Figure 4 Prediction process of 1D CNN-BILSTM model (see online version for colours) 
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Figure 5 NASA lithium ion battery capacity decline curve (see online version for colours) 

 

MinMax normalisation is performed on the capacity data of lithium-ion battery. MinMax 
normalisation formula can be defined as 

min( )
max( ) min( )

x xx
x x

∗ −=
−

 (22) 

where, x* represents the normalised lithium ion battery capacity data, and x represents the 
lithium ion battery capacity data. In this paper, RUL absolute error (RULae), RMSE, 
MAE and coefficient of determination (r-square, R2) are used as the evaluation criteria of 
the prediction model. The definitions of RULae, RMSE, MAE and R2 are as follows:  

| |aeRUL LOP EOL= −  (23) 

( )2

1

1 ˆ
n

i i
i

RMSE y y
n =

= −  (24) 

( )
1

1 ˆ
n

i i
i

MAE y y
n =

= −  (25) 

( )

( )

2

2
2

ˆ
1

i i
i

i i
i

y y
R

y y

−
= −

−




 (26) 

Among yi indicates the actual capacity data of lithium-ion battery, ˆiy  represents the 
capacity value of lithium ion battery predicted by the model, represents the average of the 
actual data of lithium ion battery capacity. Life of prediction (LOP) of lithium-ion battery 
is the number of charge-discharge cycles when the SOH value of lithium-ion battery 
reaches the failure threshold for the first time. 
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3 Experiment 

3.1 Battery experiment and data collection 

The actual driving conditions of electric vehicles are complex and uncertain. In order to 
simulate the real driving conditions of electric vehicles as much as possible, the training 
data needs to be extended to other driving conditions. This paper uses the common 
dataset from the data warehouse of the centre for advanced life cycle engineering 
(CALCE) of the University of Maryland (Dufo-López et al., 2014). In the experiment, the 
A123 battery is placed in the temperature chamber for charging and discharging. The 
detailed parameters of the A123 battery are shown in Table 1, the measured current and 
voltage are shown in Figure 6, Figure 6(a), Figure 6(c) and Figure 6(e) are the measured 
current, and Figure 6(b), Figure 6(d) and Figure 6(f) are the measured voltage. The 
dynamic stress test (DST) dataset [Figures 6(a) and 5(b)] has different measurement 
results from the Federal Urban Driving Schedule (FUDS) dataset [Figures 6(c) and 6(d)) 
and US06 dataset [Figures 6(e) and 6(f)]. DST, FUDS and US06 have obvious 
differences in discharge current and voltage. Because the training data is often more than 
the test data, this paper uses DST and FUDS dataset as the training dataset, US06 as the 
test dataset, and the temperature is 10℃, 20℃, 30℃ and 40℃. 
Table 1 A123 battery parameters 

Parameters Value (composition) 

Rated capacity/(A⋅h) 2.230 
chemical composition LiFePO4 
Weight/g 76 
Size/mm 25.4 
Length/mm 65 

In order to verify whether the GRU model is applicable to the SOC estimation of lithium 
ion batteries, the simulation results of RNN model and LSTM model are compared and 
analysed. The network model structure and parameters are unified as the data given in 
Table 2. First of all, it is necessary to determine the number of iterations. In this paper, 
the number of iterations is selected under normal temperature of 20℃. Table 3 and 
Figure 6 show the relationship between the number of iterations and the error of the SOC 
estimation of three kinds of cyclic neural networks for lithium-ion batteries. 

It can be seen from Table 3 that at the beginning of the 10 iterations, RNN has a high 
accuracy, and the relative error of LSTM and GRU is relatively large, which is related to 
the random initialisation parameters of the network. RNN initialisation parameters are 
closer to the optimal parameters. When the number of iterations reaches 20, the accuracy 
of LSTM and GRU two variants of the cyclic network is higher than that of the 
traditional RNN. RNN reaches the optimum value near the iteration number of 50. 
However, with the increase of the iteration number, the model error increases due to 
over-fitting, so the number of iterations of RNN model experiment should not be too 
much. The error of LSTM and GRU continues to decrease as the number of iterations 
increases. However, the required error is a training error and cannot reflect the actual test 
error. When the training error is far less than 0.05% of the test accuracy of the battery test 
instrument, the noise of the battery test instrument will be over-fitted. It can be seen from 
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Figure 7 that the three algorithms converge to a higher accuracy when the number of 
iterations is 50; the iterative MSE relationship is GRU < LSTM < RNN; the error is 
around 0.05% when the number of iterations is 100. Therefore, in order to prevent  
over-fitting, the number of iterations in the subsequent experiments of this paper is fixed 
at 100. 

Figure 6 Waveform of measured current and measured voltage (a) DST dataset measured current 
(b) DST dataset measured current voltage (c) FUDS dataset measured current (d) FUDS 
dataset measured current voltage (e) US06 dataset measured current (f) US06 dataset 
measured current voltage (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

  
(e)     (f) 
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Figure 7 The relationship between the number of iterations and MSE (see online version  
for colours) 

 

Table 2 Network model structure and parameters 

Structure and parameters Value and name 
Sampling time/s 5 
time step 30 
Training batch size 3,000 
Number of hidden layers 2 
Number of hidden layer nodes 32 
Activation function ReLU 
Training optimisation algorithm Adma 
Initial learning rate 0.01 
Optimisation objective function MSE 

Table 3 The relationship between the number of iterations and the error 

Iterations 
Training MSE (%) 

RNN LSTM GRU 
10 2.068 4 3.726 3 3.117 6 
20 2.203 1 1.280 7 1.079 9 
30 0.577 3 0.230 0 0.787 5 
40 0.343 9 0.192 3 0.204 7 
50 0.220 8 0.108 1 0.121 8 
100 0.538 8 0.044 0 0.026 6 
200 0.218 6 0.029 9 0.010 3 
300 8.630 7 0.016 5 0.004 1 
Average time per iteration/s 0.3866 1.2818 0.9768 
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Table 4 shows the SOC estimation error of GRU model lithium-ion battery at different 
temperatures, with MAE of 1.905%, MSE of 0.065% and RMSE of 2.508%. MAE has 
met within 2% of the estimated demand of many SOC. The estimated results of SOC at 
different temperatures of lithium ion battery in GRU model are shown in Figure 8. The 
estimated error value fluctuates slightly and the frequency of fluctuation is gentle. The 
estimated fluctuation trend is similar to that in Figure 5. 
Table 4 GRU model lithium-ion battery SOC estimation error at different temperatures 

Temperature MAE (%) MSE (%) RMSE (%) 
10℃ 1.738 8 0.048 7 2.207 2 
20℃ 1.608 2 0.049 8 2.232 2 
30℃ 1.719 6 0.048 3 2.197 8 
40℃ 2.555 3 0.115 3 3.396 6 
Average 1.905 2 0.064 5 2.507 5 

Figure 8 SOC estimation results of lithium ion battery at different temperatures in GRU model 
(a) 10℃ (b) 20℃ (c) 30℃ and (d) 40℃ (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 
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3.2 Analysis of experimental results 

Using the failure data of B05 and B06 batteries in the NASA public dataset for 
experimental simulation, the data of health factors in Table 5 is used as the input variable 
of the model, and the residual capacity of lithium ion batteries is used as the output 
variable of the model, so as to build a fitting model between the extracted health factors 
and the actual capacity of the battery (Menglei et al., 2020). The cycle charge and 
discharge cycle of lithium battery is 168, so 50% of the total dataset of lithium battery is 
used as training data to input the neural network model, and the remaining 50% is used as 
the test set to verify the model. In the B05 battery experiment, the optimal 
hyperparameters of the WOA-LSTM model are set as follows: the number of cells in the 
first hidden layer is 12, the number of cells in the second hidden layer is 16, and the 
learning rate is 0 003 9; The optimal hyperparameter settings obtained in the B06 battery 
experiment are: the number of cells in the first hidden layer is 10, the number of cells in 
the second hidden layer is 20, and the learning rate is 0 005 8. The optimal 
hyperparameters obtained after optimisation are reassigned to LSTM neural network, and 
the network prediction model is constructed again. 
Table 5 Indirect influence factors of lithium battery performance degradation 

Serial number Indirect influence factor Indicator name 
1 F1 Equal-pressure rise charging interval 
2 F2 Constant current drop charging time interval 
3 F3 Constant voltage drop discharge time interval 
4 F4 Average temperature during charging 
5 F5 Average temperature during discharge 

Figure 9 WOA fitness curve (a) B05 battery and (b) B06 battery (see online version for colours) 

  
(a)     (b) 

PSO is a commonly used parameter optimisation algorithm, but the main advantage of 
the selected WOA compared with PSO is that WOA uses random or optimal search 
agents to simulate hunting behaviour, and the search path is theoretically visible and 
controllable, the algorithm operation and implementation process is relatively simple, the 
parameters to be adjusted are few, and the ability to jump out of local optimisation is 
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strong. Elman is a kind of feedforward neural network with local memory function and 
local feedback connection, and is a relatively common regression prediction model. 
Therefore, the standard LSTM algorithm, Elman algorithm, PSOLSTM algorithm and 
WOA-LSTM algorithm are used to simulate the constructed prediction model and 
compare the error of the prediction results. Figure 9 shows the fitness curve of the WOA 
optimisation algorithm. The maximum number of iterations is set to 30. Taking MSE as 
the evaluation index, it can be seen intuitively that B05 battery is stable in the 12th 
iteration; B06 battery reached a stable state at the fourth iteration. 

As shown in Figure 10, the capacity prediction result curves of the four algorithms for 
B05 and B06 batteries are shown. From Figure 10(a) and Figure 10(b), it can be seen that 
the prediction results of the LSTM network model optimised by WOA are significantly 
closer to the actual battery capacity value, so the prediction performance of WOA-LSTM 
algorithm is significantly better than PSO-LSTM algorithm, Elman algorithm and 
standard LSTM algorithm. This also shows that the prediction accuracy of the model can 
be greatly improved by using the WOA to optimise the parameters of LSTM. 

Figure 10 Error comparison chart (a) B05 battery and (b) B06 battery (see online version  
for colours) 

  
(a)     (b) 

Table 6 shows the specific prediction error values of each index. The closer the error is to 
0, the higher the prediction accuracy and the better the model. Among them, the MAE 
index of B05 battery decreased the most significantly, which was 7. 5% lower than that 
of LSTM 68%, 3. 5% lower than Elman 24%, 4% lower than PSO-LSTM 02%; RMSE 
index decreased significantly, 7. 7% lower than LSTM 39%, 3. 5% lower than Elman 
04%, 3. 5% lower than PSO-LSTM 83%; compared with LSTM, MAPE index also 
decreased by 5. 5% 57%, 3. 5% lower than Elman 68%, 2. 5% lower than PSO-LSTM 
95%. Similarly, it can be seen from Table 6 that the MAE index of B06 battery is the 
most significantly reduced, which is 10% lower than that of LSTM 16%, 4. 5% lower 
than Elman 44%, 3. 5% lower than PSO-LSTM 88%; The RMSE index decreased 
significantly, which was 9. 9% lower than that of LSTM 49%, 3. 5% lower than Elman 
49%, 3. 5% lower than PSO-LSTM 08%; Compared with LSTM, MAPE index also 
decreased by 7. 7% 78%, 4. 5% lower than Elman 24%, 3. 5% lower than PSO-LSTM 
85%. 
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Table 6 Comparison of experimental results of various algorithms 

Battery Evaluating indicator LSTM Elman PSO-LSTM WOA-LSTM 
B05 MAE 0. 133 1 0. 088 7 0. 096 5 0. 056 3 

RMSE 0. 144 9 0. 101 4 0. 109 3 0. 071 0 
MAPE 0. 097 2 0. 078 3 0. 071 0 0. 041 5 
MAE 0. 159 9 0. 102 7 0. 097 1 0. 058 3 

B06 RMSE 0. 178 0 0. 118 0 0. 083 9 0. 083 1 
MAPE 0. 123 2 0. 087 9 0. 083 9 0. 045 5 

Figure 11 shows the error comparison histogram of the four algorithms. Using MAE, 
RMSE, and MAPE to analyse the error results, we can intuitively see the prediction 
performance of the four algorithms. Among them, the LSTM algorithm has larger 
indicators, followed by Elman algorithm, PSO-LSTM algorithm with smaller errors, and 
WOA-LSTM algorithm has smaller errors than the other three algorithms. 

Figure 11 Error comparison of various indicators (a) B05 battery (b) B06 battery (see online 
version for colours) 

  
(a)     (b) 

4 Conclusions 

In order to improve the accuracy of residual life (RUL) prediction and obtain the 
uncertainty representation of RUL prediction, this paper proposes a LSTM method based 
on drop out Monte Carlo to predict battery health. In this method, the time interval of 
constant voltage charging is selected as the indirect health factor. At the same time, the 
variational mode decomposition (VMD) is proposed to obtain the battery degradation 
trend item, effectively reducing the capacity regeneration and random interference 
phenomenon in the battery use process, and LSTM is established to improve the RUL 
prediction accuracy. This paper proposes a drop out Monte Carlo sampling method to 
obtain the uncertainty representation of RUL., Finally, two FNN networks, two CNN 
networks, one LSTM network and SCN are used for comparative experiments. The 
method in this paper is to estimate the SOC at different temperatures. In practical 
application scenarios, the battery temperature is dynamic, so there is no discussion on the 
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system temperature change and aging adaptability. The decomposition process of the 
measured current signal is an empirical process, and it is not easy to quickly estimate the 
SOC of the battery. 
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