Sentiment analysis on stocks: a hybrid feature extraction technique on 14 classifiers Online publication date: Tue, 03-Dec-2024
by Meera George; R. Murugesan
International Journal of Applied Decision Sciences (IJADS), Vol. 18, No. 1, 2025
Abstract: Accurately predicting stock prices is challenging and has garnered massive attention from researchers and investors alike. Though the literature has shown sentiment analysis as a promising approach for efficient stock price prediction, it has found a considerable gap in studies using multiple feature extraction techniques with hybrid models for the efficient sentiment classification. Under these circumstances, this study aims to perform sentiment analysis using five feature extraction techniques including a hybrid and 14 classifiers for the accurate classification of stock tweets. The study extracted 21,121 tweets spanning March 2022 to December 2022 using Twitter application programming interface. The empirical result shows the superiority of the hybrid feature extraction technique over the other methods. The support vector machine classifier with a hybrid feature extraction technique is found to be the best-performing sentiment analysis model for Twitter stock data. The study has potential applications in building optimal investment strategies and decision-making.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Applied Decision Sciences (IJADS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com