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Abstract: Due to the complex and constantly evolving process of infectious
disease transmission, we have studied a class of delayed SIR models
incorporating both death and recovery to control the spread of diseases.
We creatively use bifurcation theories to determine the critical delay τ0 for
Hopf bifurcation to comprehend the impact of time delay on the system.
The analysis of periodic solutions and bifurcation directions, based on
central manifold and normal form theory, offers insights into the system’s
dynamics. Simulations utilising time series charts and trajectory diagrams
aid in comprehending the impact of hysteresis parameters. Additionally, data
fitting is performed to verify the proposed model by contrasting it with
actual data. The research demonstrates that the implementation of consistent
preventive and hygienic measures can significantly reduce the severity of
disease exacerbation.
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1 Introduction

Infectious diseases have long been among the most serious health challenges faced by
human society, with their impacts not confined to the medical field but also extending
into multiple aspects, including the economy, society, and politics. From the Black
Death (DeWitte, 2018) to Ebola virus (Malik et al., 2023), from tuberculosis (Paton
et al., 2023) to HIV (Lestari, 2016), various infectious diseases continue to threaten
human health and life safety. The spread of infectious disease constitute a intricate and
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constantly evolving process, influenced by various factors including social network (Yin
et al., 2024), population structure (Moreira et al., 2010), environmental (Maier et al.,
2021), and behavioural habits (Damgacioglu et al., 2023).

By combining complex socio-economic data with multi-dimensional vector
coordinates, Leowski (2010) realised the efficient organisation, management and
analysis of data, and offered robust support for the prevention efforts aimed at infectious
diseases. In response to new threats, it is essential to comprehend and anticipate the
dissemination patterns of diseases. This not only helps to implement effective prevention
and control measures but also guides the formulation of public health policies and
responses to sudden infectious disease outbreaks. The dynamics of infectious diseases
have emerged as a critical area of study. Many scientists have established various
mathematical models to analyse their dynamic behaviour.

The prevention and control of infectious diseases also require real-time monitoring
of epidemic data, population flow information, and the dynamics of public health events
(Cui et al., 2022). Their method, which is based on a sequence logic model, can be
used to design an efficient monitoring system capable of capturing the early signs of an
epidemic.

The seminal SIR model was introduced by Kermack and McKendrick (1927), which
can forecast the development trend of the epidemic and provide an important reference
for public health policy-making. Subsequently, many scientists also extended SIR model
and proposed models such as SEIRS (Shao and Shateyi, 2021), SEIR (Shoaib et al.,
2023), SIRS (Li et al., 2017), SEIS (Yang, 2016), and SIS (Meng et al., 2016).

Time delay refers to the lag effect of certain processes, which often occurs in the
real-world dissemination of diseases. For example, the onset of symptoms after infection
requires a certain incubation period, and treatment also requires a certain recovery time.
Therefore, considering the time delay factor in infectious disease models is crucial
for more accurately describing the dynamic process of infectious disease transmission.
Barman and Mishra (2023) took into account the SIR model with time delays and a
nonlinear incidence rate, and introduced population mobility through a graph network.
Mvogo et al. (2023) analysed the SIRS model while considering both diffusion and
delay factors, ultimately revealing that the delay term is directly proportional to the
diffusion rate.

Time delay factors have a significant impact on the spread of infectious diseases.
For example, time delays may lead to system instability, the emergence of periodic
solutions, and bifurcation phenomena. Zhao et al. (2014) introduced an SIRS model that
integrates media coverage and incorporates a time delay factor, as follows:

dS

dt
= b− dS −

(
β1 −

β2

e+ I

)
IS + γR,

dI

dt
=

(
β1 −

β2

e+ I

)
IS − (c+ θ)I,

dR

dt
= µI − (e+ ξ)R.

Then they delve into the local asymptotic stability of the equilibria and subsequently
discuss the conditions under which periodic orbits undergo bifurcation. Furthermore,
they demonstrate that the occurrence of a local Hopf bifurcation implies the emergence
of a global Hopf bifurcation following the second critical delay value.
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Zhen et al. (2006) introduced an SIRS model that considers the dissemination of
the disease via vectors, which require an incubation period before becoming infectious.
Furthermore, it is established that the endemic equilibrium point exhibits global stability
in the context of a ‘weak delay’.

Inspired by previous research, Tchuenche and Nwagwo (2009) proposed a class of
time-delay SIR models. They used the Lyapunov function method for stability analysis,
ascertained the maximum number of critical delays that give significance and validity
to the model, and finally verified the conclusion through numerical simulation. Model
details:

dS

dt
= −βI(t− τ)Se−µ1τ − µS + γ

dI

dt
= I(t− τ)Sβe−µ1τ − (ξ + µ)I

dR

dt
= ξI − µR

(1)

The parameters are explained in Table 1.

Table 1 The biological significance of each parameter of system (1)

β The effective rate of daily contact between people
τ The time lag
µ1 Case fatality rate in the range of (0, τ)
µ Natural mortality rate of population
γ Birth rate of people
ξ Recovery rate of infected patients

Changes in time delay cause the equilibrium point of the model to undergo Hopf
bifurcation, resulting in a periodic bifurcation solution. These cyclic solutions pose
challenges for the prevention and control of infectious diseases and require a deeper
understanding of their dynamics. However, previous researchers have focused solely on
analysing the stability of the equilibrium point, neglecting a detailed examination of the
Hopf bifurcation. Consequently, there is an incomplete understanding of the impact of
time delay on the system, a lack of ability to predict the complex dynamic behaviour of
disease transmission, and potentially missed opportunities for control. In this situation,
we creatively incorporated the study of Hopf bifurcation into the analysis of delayed
infectious diseases, and used the central manifold theorem and normal form theory to
analyse bifurcation directions and periodic solutions, providing a new perspective for
understanding complex dynamic systems and infectious disease prevention and control.

The organisation of this article is as outlined below. Initially, we conduct a thorough
analysis of the Hopf bifurcation near the endemic equilibrium point, building upon
the previously established model. Subsequently, we meticulously examine the direction
of the bifurcation and the stability of the resulting periodic solutions. Finally, we
validate our findings and theorems through rigorous numerical simulations, ensuring the
robustness and applicability of our results.
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2 Dynamics analysis

2.1 The previous result

Drawing upon the cumulative achievements of numerous scholars, Tchuenche and
Nwagwo proposed an innovative time-delay SIR model:

dS

dt
= −SI(t− τ)βe−µ1τ − µS + γ

dI

dt
= βSe−µ1τI(t− τ)− (ξ + µ)I

dR

dt
= ξI − µR

Tchuenche and Nwagwo have previously established the boundedness of the solution
and employed the Lyapunov second method to demonstrate the local asymptotic stability
of two equilibrium points.

Since the first two equations are independent of the second equation, we simplify
the above equation system to obtain:

dS

dt
= −SI(t− τ)βe−µ1τ − µS + γ

dI

dt
= SβI(t− τ)e−µ1τ − (µ+ ξ)I

(2)

2.2 Bifurcation analysis

2.2.1 Analysis steps

In order to clearly illustrate the mathematical derivation process of bifurcation analysis,
we have created Figure 1.

Figure 1 The flowchart of bifurcation analysis
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2.2.2 Hopf bifurcation

Considering its biological significance, the initial condition of the model is ϕ =
{ϕ1, ϕ2} ,C+ =

{
ϕ ∈ C([−τ, 0]),R2

+

}
, where R2

+ is two dimensional positive vector
space.

In the previous paper (Tchuenche and Nwagwo, 2009), they compute R0 by utilising
the regeneration matrix theorem.

R0 =
βe−µ1τ

µ+ ξ

To find the equilibrium of the model, we set all derivatives to zero in system (2), and
solve the system as follows:{

− βS∗e
−µ1τI∗ + γ − µS∗ = 0

S∗I∗βe
−µ1τ − (ξ + µ)I∗ = 0

such that

S∗ =
µ+ ξ

β
eµ1τ , I∗ =

γ

µ+ ξ
− µ

β
eµ1τ .

Therefore, according to the above calculation, E∗ = (µ+ξβ eµ1τ , γ
µ+ξ −

µ
β e

µ1τ ) is
acquired by us.

Calculate the characteristic equation of model at E∗:∣∣∣∣λ+ µ+ βe−(µ1+λ)τI∗ βe−(µ1+λ)τS∗
−βe−(µ1+λ)τI∗ λ+ µ+ ξ − βe−(µ1+λ)τS∗

∣∣∣∣ = 0

obtain:

λ2 +m1λ+m2 + e−(µ1+λ)τ (m3λ+m4) = 0 (3)

where

m1 = 2µ+ ξ,m2 = µ2 + µξ,m3 = βI∗ − βS∗,m4 = βI∗µ− βS∗µ+ βI∗ξ.

Suppose λ = iω is a pure imaginary root in equation (3), substitute into the original
equation:

−ω2 + im1ω +m2 + (cos(τω)− i sin(ωτ))e−µ1τ (im3ω +m4) = 0

Separate the real and imaginary parts, we acquire,{
m4 cos(τω) +m3ω1 sin(τω) =

(
ω2 −m2

)
eµ1τ

m3ω cos(ωτ)−m4 sin(ωτ) = −eµ1τm1ω
(4)

Add the squares of the two equations in equation system (4), we get,

ω4 +m5ω
2 +m6 = 0 (5)

where

m5 = m1 − 2m2 −m2
3e

−2µ1τ ,m6 = m2
2 −m2

4e
−2µ1τ .
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Theorem 1: When τ = τ0, the Hopf bifurcation occurred near the endemic equilibrium
E∗ of system (??sec1), and generated a cluster of periodic solutions.

Let us solve the two equations of equation (4) simultaneously, the critical value of time
delay can be determined:

τl =
1

ω
arctan

m2m3ω −m3ω
3

m1m3ω2 +m2m4 −m4ω2
+

lπ

ω

where l = 0, 1, 2 . . . .
According to the previous conditions, it can be inferred that equation (5) has only

one true root ω0:

ω0 =

(2m2 +m2
3e

−2µ1τ −m1

)
+

√
(m1 − 2m2 −m2

3e
−2µ1τ )

2 − 4m2
2 −m2

4e
−2µ1τ

2


1
2

Then take the derivative of equation (3) on τ ,(
dλ

dτ

)−1

=
m3λτ +m4τ −m3 − (2λ+m1) e

(µ1+λ)τ

(λ+ µ1) (m3λ+m4)

and substitute λ = iω, τ = τ0, such that

Re

[(
dλ

dτ

)−1
]
= Re

[
m3λτ +m4τ −m3 − (2λ+ n1) e

(µ1+λ)τ

(λ+ µ1) (m3λ+m4)

]
=

m2
3ω

2µ1τ +m2
4µ1τ −m3m4µ1 +m2

3ω
2

(µ2
1 + ω2) (m2

4 +m2
3ω

2)

−
eµ1τ

[
cos(ωτ)

(
2m4ω

2 + 2m3µ1ω
2 +m1m4µ1 −m1m3ω

2
)

(µ2
1 + ω2) (m2

4 +m2
3ω

2)

+
sin(ωτ)

(
m1m4ω +m1m3µ1ω − 2µ1m4ω + 2m3ω

3
)]

(µ2
1 + ω2) (m2

4 +m2
3ω

2)

(6)

Combine two equations of (4) to get,
cos(ωτ) =

eµ1τ
(
m4ω

2 −m2m4 −m1m3ω
2
)

m2
4 +m2

3ω
2

sin(ωτ) =
eµ1τ

(
m3ω

3 +m1m4ω −m2m3ω
)

m2
4 +m2

3ω
2

(7)

Then, substitute equation (7) into equation (6), the transversality condition can be
obtained:

Re

[(
dλ

dτ

)−1
]
=

m2
3ω

2µ1τ +m2
4µ1τ −m3m4µ1 +m2

3ω
2

(µ2
1 + ω2) (m2

4 +m2
3ω

2)

−
e2µ1τ

[
n1ω

6 + n2ω
4 + n3ω

2 + n4ω − n5

]
(µ2

1 + ω2) (m2
4 +m2

3ω
2)

2
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where
n1 = 2m2

3, n2 = 2m2
4 +m2

1m
2
3 −m1m

2
3µ1 − 2m2m

2
3,

n3 = m2
1m

2
4 − 2m2m

2
4 −m2

1m3m4µ1 −m1m2m
2
3µ1 −m1m

2
4µ1,

n4 = m2
1m3m4µ1, n5 = −m1m2m

2
4µ1.

When R0 < 1 and ω0 > 0, we can obtain Re
[(
dλ
dτ

)−1
]
> 0.

H1 When τ = τ0, the characteristic equation has a pair of simple pure imaginary
roots ±iω. According to the implicit function theorem, for τ that is sufficiently
close to τ0, the corresponding eigenvalue can be formulated as
ω(τ)i+ α(τ) = λ(τ), and ω(τ0) = ω0, α(τ0) = 0. It can be concluded that as τ
increases and passes through τ0, the above characteristic roots cross the
imaginary axis.

H2 The transverse condition Re
[(
dλ
dτ

)−1
]
> 0 .

H3 When τ = τ0, equation (3) possesses negative real parts for all roots except for
±iω0; when τ ∈ [0, τ0), all roots hold a negative real part; when τ ∈ (τl, τl+1],
there are 2(l + 1) roots with positive real parts.

Then G(0) = βγe−µ1τ + 2µ+ ξ − 2µ(µ+ ξ) < 0, and when λ → +∞, G(λ) → +∞ .
With H1–H3, we can obtain when τ = τ0, there is at least one root that displays a

positive real component and traverses the imaginary axis from left to right. That is to
say, as τ = τ0, there is the Hopf bifurcation near E∗. The proof is completed.

2.2.3 The direction of bifurcation and the periodic solutions

We will employ the centre manifold theorem (Carr, 2012) along with the normal form
method (Kuznetsov et al., 1998) in our analysis. By combining these two approaches,
we can gain deeper insights into the system’s dynamics.

Due to µ1 being small enough, e−µ1τ → 1.
In addition to the definitions already provided in the previous text, the variables and

notations of this section are shown in Table 2.

Table 2 The variables and notations of Section 2.2.3

D A feasible domain
y, j, x, u The function defined in the feasible domain
L, ϕ, κ, φ,A,R,M,N The operator defined within the feasible domain
ϱ1, ϱ2, θ, ϑ, ϵ, h The variable defined in the feasible domain
χ Dirac function
M The conjugate operator of M
A∗ The adjoint operator of A
q, q1 The characteristic vector

Assume ϱ1 = S − S∗, ϱ2 = I − I∗, τ = τ0 + ϑ, we translate system (2) into the
equation defined in D = D([−1, 0],R2),

ẏ(t) = Lϑ(yt) + j(ϑ, yt) (8)
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where yt(θ) = y(t+ θ), Lϑ : C → R2, j : R× C → R2, i.e.,

Lϑϕ = (τ0 + ϑ)

(
− βγ
µ+ξ − µ 0
βγ
µ+ξ −(µ+ ξ)

)(
ϕ1(0)

ϕ2(0)

)
+ (τ0 + ϑ)

(
0−(µ+ ξ)
0 µ+ ξ

)(
ϕ1(−1)

ϕ2(−1)

)

and j(ϑ, yt) = (τ0 + ϑ)

(
−βϕ1(0)ϕ2(−1)
βϕ1(0)ϕ2(−1)

)
.

Due to Riesz representation theorem (Goodrich, 1970), for ϵ ∈ [−1, 0], there exists
κ(ϵ, ϑ) such that

Lϑ(ϕ) =

∫ 0

−1

dκ(ϵ, ϑ)ϕ(ϵ)

where ϕ ∈ C([−1, 0], R2).
Then, we can construct

κ(ϵ, ϑ) = (τ0 + ϑ)

(
− βγ
µ+ξ − µ 0
βγ
µ+ξ −(µ+ ξ)

)
χ(ϵ)

− (τ0 + ϑ)

(
0−(µ+ ξ)
0 µ+ ξ

)
χ(ϵ+ 1)

where χ is Dirac function.
The definition is as follows:

A(ϑ)ϕ =

{
dϕ(ϵ)
dϵ , ϵ ∈ [−1, 0),∫ 0

−1
dκ(s, ϑ)ϕ(s), ϵ = 0.

R(ϑ)ϕ =

{
0, ϵ ∈ [−1, 0),

j(ϑ, ϕ), ϵ = 0.

Equation (8) can be converted to:

ẏ(t) = A(ϑ)yt + ytR(ϑ) (9)

Define the adjoint operator A∗(0) as:

A∗(0)φ(s) =

{
−dψ(h)

dh , h ∈ (0, 1],∫ 0

−1
dκ(t, 0)φ(−t), h = 0

(10)

Subsequently, bilinear inner product is formulated as:

⟨φ, ϕ⟩ = φ(0)φ(0)−
∫ 0

ϵ=−1

∫ ϵ

ς=0

φT (ς − ϵ)dκ(ϵ)ϕ(ς)dς (11)



Dynamic performance of a delayed-onset disease model 9

Here is conjugate operator A∗ = A∗(0) and A = A(0).
From the previous discussion, ±iω0τ0 is the characteristic root of both A and A∗, so

we should calculate A and A∗ are respectively related to the eigenvectors of eigenvalues
iω0τ0 and −iω0τ0.

Assume A0 is the eigenvector of characteristic value iω0τ0, such that, A0q(ϵ) =
iω0τ0q(ϵ), q(ϵ) = (1, q1(0))

T eiω0τ0ϵ.
Especially, when ϵ = 0 also holds true, as follow:

κ(0, 0)q(0)− κ(−1, 0)q(−1) = iω0τ0q(0)

By substituting and organising, we can obtain,

τ0

(
− βγ
µ+ξ − µ 0
βγ
µ+ξ −(µ+ ξ)

)(
1

q1

)
− τ0e

−iω0τ0

(
0−(µ+ ξ)
0 µ+ ξ

)(
1

q1

)
= iω0τ0

(
1

q1

)
At this time, the solution of the above equation q1 = − µ+iω0

iω0+µ+ξ
.

Similarly, assume q∗(h) = M(1, q∗1(h))e
iω0τ0h is A∗

0 is the eigenvector of
characteristic value −iω0τ0, such that, A∗

0q
∗(h) = −iω0τ0q

∗(h).
Particularly, when h = 0, combine equation (10), as follows:

A∗(0)q∗(0) = −q∗(1)κ(−1, 0) + q∗(0)κ(0, 0)

Then, substitute and obtain,

M (1, q∗1(h)) τ0

(
− βγ
µ+ξ − µ 0
βγ
µ+ξ −(µ+ ξ)

)
− eiω0τ0M (1, q∗1(h)) τ0

(
0−(µ+ ξ)
0 µ+ ξ

)
= −iω0τ0M (1, q∗1(h))

The solution of the above equation is q∗1 = (µ−iω0)(µ+ξ)
βγ + 1.

To make ⟨q∗(h), q(ϵ)⟩ = 1, it is necessary to find M according to equation (11),

⟨q∗(h), q(ϵ)⟩ = M (1, q∗1) (1, q1)
T

−
∫ 0

−1

∫ ϵ

ς=0

M (1, q∗1) e
−iω0τ0(ς−ϵ)dκ(ϵ) (1, q1)

T
eiω0τ0ςdς

= M
[
1 + q∗1q1 + τ0(µ+ ξ) (q1q̄

∗
1 − q1) e

−iω0τ0
]

We can get

M =
1

1 + q∗1q1 + τ0(µ+ ξ)(q1q
∗
1 − q1)e−iωτ0

,

M =
1

1 + q∗1q1 + τ0(µ+ ξ)(q1q
∗
1 − q1)e

iωτ0
.

Then we compute the parameters of the central manifold at ϑ = 0.
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Firstly, define

x(t) = ⟨q∗, yt⟩ , N(t, ϵ) = yt − 2Re {x(t)q(ϵ)} = N(x(t), x(t), ϵ)

where

N(x(t), x(t), ϵ) =
N20(ϵ)

2
x2 +N11(ϵ)xx+

N02(ϵ)

2
x2 + · · · (12)

Here, x and x serve as the local coordinates that correspond to the centre manifold in
the q∗ and q∗ directions, respectively.

ẋ(t) = ⟨q∗, u̇(t)⟩ = ⟨q∗, Aut +Rut⟩ = ⟨q∗, Aut⟩+ ⟨q∗, Rut⟩
= iω0τ0z + q∗(0)f(0, N(x, x, 0) + 2Re {xq(ϵ)})
= iω0τ0x+ q∗(0)f0(x, x) = iω0τ0x+ p(x, x)

where

p(x, x) =
p20
2

x2 + p11xx+
p02
2

x2 +
p21
2

x2x+ · · · (13)

Considering the define of j(ϑ, yt),

p(x, x) = q∗(0)j0(x, x) = M(1, q∗1)τ0

(
−βy1t(0)y2t(−1)
βy1t(0)y2t(−1)

)
Due to yt(0) = 2Re {x(t)q(0)}+N(t, 0), i.e.,

y1t(0) = N(t, 0) + 2Re {x(t)q(0)} = N (1)(x(t), x(t), 0) + x(t) + x(t)

=
N

(1)
20 (0)

2
x2 +N

(1)
11 (0)xx+ x+ x+

N
(1)
02 (0)

2
x2 + o(|(x, x)|3)

Likewise,

y1t(−1) = N(t,−1) + 2Re {x(t)q(−1)} ,
y2t(−1) = N (2)(x(t), x(t),−1) + 2Re

{
x(t)q1e

−iω0τ0
}

=
N

(2)
20 (−1)

2
x2 +N

(2)
11 (−1)xx+

N
(2)
02 (−1)

2
x2

+ x(t)q1e
−iω0τ0 + o(|(x, x)|3).

Then compare coefficients, obtain:

p20 = 2Mτ0(q1
∗ − 1)βq1e

−iω0τ0 ,

p11 = 2Mτ0(q1
∗ − 1)β Re

{
q1e

−iω0τ0
}
,

p02 = 2Mτ0(q1
∗ − 1)βq1e

iω0τ0 ,

p21 = 2Mτ0β

[
(q1

∗ − 1)

(
1

2
q1e

iω0τ0N
(1)
20 (0) +N

(1)
11 (0)q1e

−iω0τ0

+N
(2)
11 (−1) +

N
(2)
20 (−1)

2

)]
.
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Due to Ṅ = ẏt − ẋ · q − ẋ · q,

Ṅ =

{
AN − 2Re {q∗(0)f0q(ϵ)} , ϵ ∈ [−1, 0)

AN − 2Re {q∗(0)f0q(ϵ)}+ j0, ϵ = 0

= AN +B(x, x, ϵ)

(14)

where

B(x(t), x(t), ϵ) =
B20(ϵ)

2
x2 +B11(ϵ)xx+

B02(ϵ)

2
x2 + · · · (15)

Combine (12) and (14),

Ṅ = N20xẋ+N11ẋx+N11xẋ+ · · ·

= N20iω0τ0x
2 +

N20p20
2

x3 +N20p11x
2x+

N20p02
2

xx2

+
N20p21

2
x3x+ · · ·

(16)

Due to AN = AN20(ϵ)
2 x2 +AN11(ϵ)xx+ AN02(ϵ)

2 x2 + · · · , we get,

AN +B =
B20(ϵ)

2
x2 +

AN20(ϵ)

2
x2 + [AN11(ϵ) +B11(ϵ)]xx

+
AN02(ϵ) +B02(ϵ)

2
x2.

(17)

Then comparing (16) and (17), we can obtain,

N11(ϵ)A = −B11(ϵ), (2iω0τ0 −A)N20(ϵ) = B20(ϵ). (18)

According to (14), we analyse when ϵ ∈ [−1, 0),

B(x, x, ϵ) = −2Re {q∗(0)j0q(ϵ)}

= −1

2
[p20q(ϵ) + p02q(ϵ)]x

2 − [p11q(ϵ) + p11q(ϵ)]xx+ · · ·

Base on the coefficients of equation (15),

B11(ϵ) = −q(ϵ)p11 − p11q(ϵ), B20(ϵ) = −p20q(ϵ)− p02q(ϵ). (19)

Combine (18), (19) and A,

Ṅ20(ϵ) = q(ϵ)p02 + 2iω0τ0N20(ϵ) + p20q(ϵ). (20)

Solving equation (20),

N20(ϵ) =
ip20
ω0τ0

q(0)eiω0τ0ϵ +
ip02
3ω0τ0

q(0)e−iω0τ0ϵ + C1e
2iω0τ0ϵ,
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where C1 = (C11, C12)
T ∈ R2.

Similarly, we can obtain:

Ṅ11(ϵ) = p11q(ϵ) + q(ϵ)p11. (21)

Solve equation (21),

N11(θ) = − ig11
ω0τ0

q(0)eiω0τ0ϵ +
ip11
ω0τ0

q(0)e−iω0τ0ϵ + C2,

where C2 = (C21, C22)
T ∈ R2.

Then, we need to determine the values of C1 and C2. According to equation (18)
and A, we can obtain,∫ 0

−1

dκ(ϵ)N20(ϵ) = −B20(ϵ) + 2iω0τ0N20(ϵ),∫ 0

−1

dκ(ϵ)N11(ϵ) = −B11(ϵ).

(22)

According to q(ϵ) is the eigenvector of A(0),∫ 0

−1

dϵ(ϵ)N20(ϵ) =
ip20
ω0τ0

∫ 0

−1

dκ(ϵ)q(ϵ) +
ip02
3ω0τ0

∫ 0

−1

dκ(ϵ)q(ϵ)

+

∫ 0

−1

dκ(ϵ)C1e
2iω0τ0ϵ

=

∫ 0

−1

dκ(ϵ)C1e
2iω0τ0ϵ − p20q(0) +

p02
3

q(0).

Due to 2iω0τ0N20(0) = −2p20q(0)− 2p02
3 q(0) + 2iω0τ0C1, the two equations of

equation (22) become:

B20(0) = −p20q(0)q(0) +

[
2iω0τ0 −

∫ 0

−1

dκ(ϵ)e2iω0τ0ϵ

]
C1 − p02, (23)

B11(0) = −p11q(0)−
∫ 0

−1

dκ(ϵ)C2 − p11q(0). (24)

Base on the equation (14),

B(x, x, 0) = −2Re {q∗(0)j0q(0)}+ j0(x, x)

= −1

2
[q(0)p02 + p20q(0)]x

2 − xx [q(0)p11 + p11q(0)]

+ · · ·+ j0(x, x).

(25)

Then, from equation (15), we can obtain,

B(x(t), x(t), 0) =
B20(0)

2
x2 +B11(0)xx+

B02(0)

2
x2 + · · · (26)
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Subsequently, due to

j0(x, x) = τ0

(
−βy1t(0)y2t(−1)

βy1t(0)y2t(−1)

)
= τ0

(
−βq1e

−iω0τ0

βq1e−iω0τ0

)
x2 + τ0

(
−2β Re

{
q1e

−iω0τ0
}

2β Re
{
q1e

−iω0τ0
} }

xx+ · · ·
(27)

Hence, according to (25), (26) and (27),

B20(0) = −q(0)p02 + (−βτ0q1e
−iω0τ0 , βτ0q1e

−iω0τ0)T − q(0)p20, (28)
B11(0) = (−2βτ0 Re

{
q1e

−iω0τ0
}
, 2βτ0 Re

{
q1e

−iω0τ0
}
)T

− q(0)p11 − p11q(0).
(29)

Comparing (23) and (28), we can obtain:

C1 = 2

(
2iω0 +

βγ
µ+ξ + µ (µ+ ξ)e−2iω0τ0

− βγ
µ+ξ 2iω0 + (µ+ ξ)(1− e−2iω0τ0)

)−1(
−βτ0q1e

−iω0τ0

βτ0q1e
−iω0τ0

)
.

Similarly, we can obtain,

C2 = 2

(
βγ
µ+ξ + µ µ+ ξ

− βγ
µ+ξ 0

)−1(
−βτ0 Re

{
q1e

−iω0τ0
}

βτ0 Re
{
q1e

−iω0τ0
} ) .

Then we substitute and obtain the value of p21, N11(ϵ) and N20(ϵ). Ultimately, we also
proceed to compute the subsequent values:

V =
ip11p20
2ω0τ0

+
p21
2

− i |p11|2

ω0τ0
− |p02|2 i

6ω0τ0
,

X = − Re {V }
Re {y′(τ0)}

,

Y = 2Re {V } ,

Z = − Im {V }+ υ Im {y′(τ0)}
ω0τ0

.

Based on the inherent attributes of bifurcation periodic solutions, the subsequent
theorem can be logically deduced.

Theorem 2:

1 When X < 0 (X > 0), the system generates a subcritical (supercritical) Hopf
bifurcation.

2 When Y < 0 (Y > 0), the periodic solution is stable (unstable).

3 When Z < 0 (Z > 0), the period of a bifurcation periodic solution undergoes a
decrease (increase) as the value of τ is incremented.
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3 Numerical simulation

In this research paper, we formulate a delayed SIR system pertaining to the dynamics of
infectious diseases. We take different values for the parameters of the DDE system and
conduct numerical simulations using MATLAB to verify its reliability and authenticity.

To exemplify the behaviour of system (2), we present two numerical examples.
The numerical simulation is carried out with fixed parameters µ1 = 0.002, γ = 0.5,
µ = 0.2, ξ = 0.3, β = 0.007. These data are derived from the actual biological
significance discussed in the previous article (Constantino et al., 2025) and are more
suitable for fitting this model. Based on the theoretical knowledge in the article, we can
calculate the critical value τ0 = 0.85.

1 Firstly, we set τ = 0.5 < τ0. Next, we provide initial values S(0) = 2, I(0) = 1.
Time series figures of various variables S and R at E∗ when τ < τ0 is presented
in Figures 2 and 3.

Figure 2 When τ < τ0, the time series figure of S (see online version for colours)

Figure 3 When τ < τ0, the time series figure of I (see online version for colours)
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From Figures 2–3, we can know when τ < τ0, the equilibrium E∗ is determined
to be globally stable. It can be seen that both susceptible (S) and infected
individuals (I) eventually tend to stabilise, indicating that the disease has been
controlled.

2 Subsequently, we set τ = 1.2 > τ0. The initial value is the same as no. 1, it
suggests that E∗ is unstable and exhibits oscillatory behaviour (see Figures 4 and
5). As shown in the Figures 4 and 5, the equilibrium point is in an unstable state.
When τ exceed the delay threshold τ0, the disease may be more likely to spiral
out of control, leading to large-scale outbreaks.

Figure 4 When τ > τ0, the time series figure of S (see online version for colours)

Figure 5 When τ > τ0, the time series figure of I (see online version for colours)

From Figure 6, we can see that the equilibrium point is unstable, resulting in Hopf
bifurcation which reveals the stability transition of the epidemic model under the
change of specific parameters, such as the transition from stable state to periodic
oscillation.
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Figure 6 Trajectory diagram of S changing with I (see online version for colours)

4 Conclusions

Firstly, through a detailed analysis of the local stability of the equilibrium point in the
model, we have determined the delay threshold τ0 for triggering Hopf bifurcation. When
the time delay exceeds this threshold, the system will transition from a stable state to
an oscillatory state, characterised by the appearance of periodic solutions. Subsequently,
we utilised the central manifold theorem and normal form theory as our analytical
tools to delve into the direction of bifurcations and periodic solutions. Furthermore,
we conducted numerical simulations using MATLAB to verify the reliability and
authenticity of our theoretical analysis. By setting different values for the parameters of
the delayed differential equation (DDE) system and observing the resulting time series
figures, we were able to visualise the system’s behaviour and confirm our findings.
Specifically, when the time delay was below the threshold (τ < τ0), the equilibrium
point was stable, with both susceptible and infected individuals eventually tending
towards the equilibrium values. However, when the time delay exceeded the threshold
(τ > τ0), the equilibrium point became unstable and exhibited oscillatory behaviour,
consistent with our theoretical predictions.

It is found that the significant impact of time delay on the dissemination of infectious
diseases. Through the formulation of a delayed SIR model and the application of
thorough mathematical analysis, we have gained profound insights into the system’s
behaviour and how it is influenced by delays. Our key findings indicate that delays can
trigger system instability, the appearance of periodic solutions, and bifurcations, all of
which hold significant ramifications for the prevention and control of infectious diseases.
Furthermore, our research underscores the importance of controlling the disease before
reaching a critical threshold of time delay. By comprehending these intricate dynamics,
we can enhance our predictive capabilities regarding the behaviour of infectious diseases
and devise more potent strategies for their management and mitigation.

In summary, our research not only suggests effective prevention and control
measures but also significantly contributes to the theoretical understanding of time-delay
models in the context of infectious diseases. Our contributions enrich the existing
knowledge of time-delay models in infectious disease dynamics and further advance
the theoretical framework of such models. By providing a deeper understanding of how
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delays influence the dissemination of infectious diseases, our work paves the way for the
development of more accurate and effective disease management strategies, ultimately
enhancing our ability to combat and mitigate the impact of infectious diseases on public
health.
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