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Abstract: Radar emitter recognition is a critical part of electronic
countermeasures and determines the implementation of subsequent jamming
measures. With the rapid development of deep learning (DL), the radar
emitter recognition method based on DL is also widely developed. However,
methods based on time-frequency analysis to obtain image features suffered
from information loss and computational complexity; end-to-end methods
based on raw radar signals had low accuracy at low signal-to-noise ratio
(SNR). Therefore, we investigated the frequency distribution of signal and
noise, analysed the working principle of batch norm, and proposed to
suppress the high-frequency noise by removing the batch norm in the
network. Furthermore, we constructed a straightforward end-to-end denoising
and recognition network as well as utilised the latest classification network
training process to improve the accuracy of radar emitter recognition at low
SNR. Experiments validated that the proposed method achieved SOTA result
on the well-known DeepSig RadioML 2018.01A.
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1 Introduction

Radar systems have a wide range of applications in both military and civilian fields,
such as air traffic control, weather monitoring and battlefield surveillance. For both
military and civil applications, the ability to accurately identify different radar emitters is
critical and important for mission success. In the civilian field, such as air traffic control,
accurate recognition of radar emitter is critical to avoiding airborne collisions and
improving aviation safety. In the military field, radar emitter recognition is one of the
key technologies in electronic reconnaissance and electronic countermeasure systems,
and the accuracy of this technology directly affects how well electronic reconnaissance
and electronic countermeasures work (Liu et al., 2005). Accurate recognition of radar
emitter helps to grasp the radar’s working status, the level of power and ribbing and
other information and provide intelligence support for battlefield situational awareness,
enemy recognition, threat alerts, and battle plan development (Liu, 2020). It is crucial
for defense, surveillance and offense, and is an important factor affecting the victory or
defeat of electronic countermeasures under the complex battlefield environment.

The traditional radar emitter recognition method mainly relies on the pulse
description word, including carrier frequency, pulse amplitude, pulse repetition interval,
pulse width and other information, while recognising the radar emitter through expert
experience judgment (Yang et al., 2023). However, with the rapid development of
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phased array technology and the wide application of multifunctional radar, the density
and complexity of radar signals have increased dramatically, and the radar parameters
and waveform styles have become more complex and diversified. In this case, the
shortcomings of the traditional radar emitter recognition methods have come to the
fore. Coupled with the increasing complexity of the electromagnetic environment,
the number of electromagnetic signals has increased exponentially, and most radars
also adopt low interception probability, making the waveform characteristics become
complex and diverse, which also brings difficulties to the traditional emitter recognition
methods. In the current environment, the traditional methods face the problems of
diverse emitter, similar signals and large noise, which leads to their poor adaptability,
weak generalisation ability, and poor universality, and makes it difficult to meet the
needs of emitter recognition in complex electromagnetic environments (Sun et al., 2020).

Deep learning (DL), with its excellent feature extraction capability, has made
remarkable achievements in the fields of image segmentation (Zhu et al., 2019),
object detection (Wu et al., 2022), speech recognition (Shahamiri et al., 2021), and
hyperspectral image classification (He et al., 2018). This has led to a rapid development
in the research of DL-based radar emitter recognition methods. Time-frequency analysis
(López-Risueño et al., 2005) is a common emitter recognition method, which converts
the radar sequence signal into a 2D image through time-frequency analysis. Then
the image is preprocessed as an input to a deep neural network (DNN), which in
turn determines the radar signal category. For example, Huynh-The et al. classified
radar signals by using the Choi-Williams distribution based on converting the original
radar signals into images and then constructing an LPI-Net to extract image features
(Huynh-The et al., 2021). Zhang et al. firstly converted the signal into two kinds
of time-frequency images by smooth pseudo wignerville distribution (SPWVD) and
Born-Jordan distribution and the image features are extracted by using convolutional
neural network (CNN) (Zhang et al., 2019). Subsequently, the joint features are formed
by image features and hand-crafted features, and the joint features are fused by applying
the multimodality fusion model, which leads to the recognition of radar signals. Xiao
et al. converted the original radar signal into a 2D image by short time Fourier transform
(STFT), then denoised the image using k-mean algorithm, and subsequently extracted
the image features using CNN to identify the radar signal (Xiao and Yan, 2021). Yu
et al. convert the radar sequence signal into a frequency domain image by STFT, and
then use a deep normalised convolutional neural network (DNCNN) to reduce the noise
of the image, secondly use the denoised image to train the established classification
model which finally recognises the radar signals using the trained model (Yu et al.,
2022). However, converting raw radar signals to 2D images not only leads to loss of
information but also increases computational complexity.

Besides the time-frequency analysis method, it is also possible to identify the
radar emitters directly from the original radar sequence signals. Zhang et al. proposed
a high-order convolutional attention network (HoCAN) based on the higher-order
attention mechanism, which introduces a nonlinearly transformed covariance matrix
and a higher-order convolutional layer to improve the discriminative power of the
signals and the classification accuracy (Zhang et al., 2023). Wang et al. trained two
convolutional neural networks using different datasets, where one of the CNNs was
trained on samples consisting of two I/Q signals to identify simple modulations and sort
out difficult modulations, and the other CNN was trained on samples consisting of signal
constellation diagrams to identify difficult modulations (Wang et al., 2019). Huynh-The
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et al. proposed a new CNN which is designed with several specific convolutional
blocks to learn the correlation of spatio-temporal signals simultaneously via different
asymmetric convolutional kernels for automatic modulation recognition (Huynh-The
et al., 2020). Although the above methods achieve end-to-end recognition, none of
them considered the effect of noise. However, in actualised environments, the SNR of
the received signal is low since the signal is usually affected by environmental noise,
interference, atmospheric attenuation and other factors during transmission, which makes
denoising a key step in improving recognition accuracy.

In the radar emitter recognition task, denoising is a key link because it directly
affects the subsequent recognition accuracy. Effective denoising not only improves the
quality of the signal, but also enhances the ability to resist interference and noise, thus
improving the overall performance of the model. Therefore, finding a method that can
effectively reduce the signal noise is an inevitable way to improve the accuracy of
emitter recognition. Du et al. proposed a denoising classification network DNCNet for
radar emitter recognition consisting of denoising and classification sub-networks. And
they used a two-phase training approach, where the first phase trains the denoising
sub-network, and the second phase strengthens the mapping between the denoising
results and the perceptual representations (Du et al., 2022). Wang et al. used a relatively
long signal can implicitly perform noise reduction in a statistical sense, including two
steps of constructing sampling points and smoothing filtering (Wang and Gan, 2022).
Although the above method achieved reasonable denoising results and improved the
classification accuracy, its performance at low SNR is still unsatisfactory. Effective
denoising methods should not only suppress the noise, but also ensure that no important
information is lost. In this paper, we proposed a simple and direct denoising and
recognition method for the problems of DL-based radar emitter recognition method,
constructed an end-to-end network, used a new network training method, and improved
the recognition accuracy and robustness of the model. The main contributions are
summarised as follows:

• Our experiment showed that the network improvement which is not specific to the
dataset is not the main reason for the improvement of the classification accuracy.
We analysed the signal and the noise in the frequency domain, investigated the
frequency distributions of both, and found that suppressing the noise in the signal
is what is necessary to improve the accuracy.

• We analysed the function and principle of BN, elaborated its performance at low
and high frequencies when the CNN performs the classification task. Therefore,
we proposed a method to suppress the high-frequency noise by removing the BN
layer, and constructed an simple and straightforward end-to-end denoising and
classification network.

• We trained the network using the latest exponential moving average (EMA)
method, verified that the proposed method achieved SOTA results on the
RadioML 2018.01A. We also validated the applicability of the method using the
VGG16 network, and compared the proposed method with other classification
methods.
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2 Problem formulation

2.1 Radar signal

In a practical environment, the radar signal received by a receiver can be represented
as:

x(t) = s(t) + n(t), (1)

where, s(t) denotes the radar signal, n(t) denotes the additive noise signal, which is
mostly Gaussian white noise in modelling. In order to facilitate computer processing,
we discretise the received signal as (Zhao et al., 2021):

x(l) = s(l) + n(l), 1 ≤ l ≤ L, (2)

where l ∈ N denotes the sampling point and L denotes the length of the signal. The
radar signal s(l) can be expressed as:

s(l) = Aejϕ, (3)

ϕ = 2πf0l + φ(l) + φ0, (4)

where A is the amplitude of the radar signal, usually a constant, f0 is the carrier
frequency of the radar signal, φ0 is the initial phase, φ(l) indicates the intra-pulse
modulation information of the radar signal. Differences between different emitter are
mainly reflected through φ(l). The intra-pulse modulation of emitter can be analogue
modulation and digital modulation. Analogue modulation is mainly single-frequency
modulation (SFM), linear frequency modulation (LFM), nonlinear frequency modulation
(NLFM), etc. Digital modulation is mainly phase shift keying (PSK), frequency shift
keying (FSK), amplitude shift keying (ASK) and so on.

2.2 Noise signal

In radar receivers, noise signals are generally divided into Gaussian noise signals
and non-Gaussian noise signals. Gaussian noise signal is the noise signal whose
probability density function (PDF) obeys Gaussian distribution, which can be divided
into Gaussian white noise and Gaussian colour noise. Non-Gaussian noise signals, also
called impulse noise, have a PDF that does not obey a Gaussian distribution, and are
usually represented by an alpha-stable distribution in radar and communications.

Thermal noise in most electronic systems such as radar and communication systems
is typically additive white Gaussian noise (AWGN). AWGN is a random process
consisting of a series of uncorrelated random variables with a constant value of power
spectral density (PSD), and is the simplest type of noise (Préaux and Boudraa, 2020).
Assuming that Gaussian white noise obeys a Gaussian distribution that satisfies X ∼
N(µ, σ), its PDF can be expressed as:

P1(x) =
1√
2πσ

exp
(
− (x− µ)2

2σ2

)
. (5)
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In addition to the thermal noise inherent in electronic systems, the noise contained in
data measured in engineering practice is often coloured noise. Unlike Gaussian white
noise, the noise amplitude at any moment in Gaussian coloured noise is not independent
and is correlated with the noise amplitudes at other moments, and its PSD is not constant
(Wen et al., 2017). Under discrete conditions, assuming that the autocorrelation function
of Gaussian coloured noise is R(l), its PSD can be expressed as the Fourier transform
of the autocorrelation function according to the Wiener-Khinchin theorem:

P2(ω) =
∑
p∈Z

R(l) exp(−jωl). (6)

Except for a few exceptions, there is no closed analytical formula for the probability
density of alpha-stable distribution, so it is generally represented by the characteristic
function. Alpha-stable distribution is determined by four parameters (α, β, γ, a), α
denoted by the characteristic index, which describes the degree of shock of alpha-stable
distribution. β is the symmetry parameter, which describes the degree of distortion of
alpha-stable distribution. γ is the scale parameter, which is equivalent to the variance
in Gaussian noise, a is the position parameter, and its characteristic function can be
expressed as (Liu et al., 2024):

φ(t) = exp{jat− γ | t |α [1 + jβ sgn(u)w(t, α)]}, (7)

w(t, α) =

{
2
π log | t |, α = 1

tan απ
2 , α ̸= 1

(8)

sgn(u) =


1, u > 0

0, u = 0

−1, u < 0

(9)

2.3 Signal to noise ratio

As the name suggests, the SNR is the ratio of signal power to noise power, usually
expressed in dB (Cosman et al., 1994). Its calculation formula is:

SNR = 10lg
Ps

Pn
, (10)

where Ps is the power of the signal and Pn is the noise power. The smaller the SNR,
the stronger the noise power in the received signal and the weaker the signal power.

As shown in Figure 1(a) is the signal with SNR equal to 30 dB in the time domain
image, and Figure 1(b) is the signal with SNR equal to –20 dB in the time domain
image. It can be clearly seen that the signal is annihilated by the noise in the –20 dB
condition very seriously, and it is very difficult to distinguish between the two, which
is the reason why several end-to-end methods described in Section 1 are ineffective
in the case of low SNR. We perform a fast Fourier transform (FFT) on the signal in
Figure 1 and convert it to the frequency domain for analysis, as shown in Figure 2. It
can be seen that the signals with SNR equal to 30 dB, shown by the orange line in the



An end-to-end radar emitter denoising and recognition method 29

figure, are concentrated in the low frequency range, while the signals with SNR equal to
–20 dB condition, shown by the blue line, are distributed in all frequency ranges. This
is because the signal in the –20 dB is mainly noise, which is present over the entire
frequency band and is more prominent at high frequencies. Therefore, we can use the
difference in the frequency distribution of the noise and the signal to suppress the noise.

Figure 1 The signal with SNR equal to 30 dB and –20 dB in the time domain, (a) the signal
with SNR = 30 dB (b) the signal with SNR = –20 dB (see online version
for colours)

(a) (b)

Figure 2 The signal with SNR = 30 dB and SNR = –20 dB in the frequency domain
(see online version for colours)
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3 Proposed method

3.1 Batch norm

Batch norm (BN) is a widely used technique to train DNNs faster and more consistently
(Santurkar et al., 2018). Ioffe and Szegedy proposed BN in 2015, where they included
normalisation as part of the model architecture and performed normalisation in each
training mini-batch (Ioffe and Szegedy, 2015). BN performs a certain regularisation
function and successfully prevents gradient explosion and vanishing. Currently, BN
has been derived from layer normalisation, instance normalisation, group normalisation,
switchable normalisation, and various other normalisation processes. According to Ioffe
and Szegedy (2015), the purpose of BN is to make the inputs of each layer of the
network satisfy the distribution law of zero mean and unit variance.

Therefore, the BN layers is in between the two layers of the network and its role is
to take the output from the upper layer, normalise it and pass it on to the next layer.
Assuming that the ith layer has n channels and the input is an n-dimensional data Xi =
(x(1)...x(n)), then the BN connected to that layer will normalise each dimension before
feeding it into the ith layer. First normalises the evey x to get x̂ with zero mean and
unit variance:

x̂(m) =
x(m) − E[x(m)]√

Var[x(m)]
m ≤ n,m ∈ R, (11)

where E[x(m)] and Var[x(m)] are computed on the training set. In order not to reduce
the representational power of the network, each x̂ is scaled and shifted:

y(m) = γ(m)x̂(m) + β(m), (12)

where γ(m) and β(m) are set parameters, both of which are updated along with
the original model parameters as the gradient is backpropagated. If γ(m) and β(m)

eventually converge to
√
Var[x(m)] and E[x(m)], respectively, then the BN will recover

the original data x(m). Finally, all y(m) will be fed into the ith layer by composing a
new distribution Yi = (y(1)...y(n)).

Basically almost CNN contain BN because of its excellent performance, e.g.,
ResNet, VGG, etc. and BN is especially widely used in classification problems.
However, not all classification problems are suitable for BN. Wang et al. found that
BN improves the utilisation of both low-frequency and high-frequency information.
And the high-frequency part is generally smaller in amplitude, and BN helps CNN to
utilise the high-frequency part well. And if only utilising the low-frequency part, the
BN does not always improve the model capability (Wang et al., 2020). As described
in Subsection 2.3, they are different frequency distributions of the noise and the signal,
with the frequency of the signal tending to be in the lower part of the frequency
spectrum and the noise being more prominent at higher frequencies. Thus, the model
should make more use of the low-frequency information and discard the high-frequency
information appropriately when recognising the signal. Based on this, we remove the
BN layers in the model to achieve the purpose of denoising, making the model better
extract signal features and improving the recognition ability of the model. In Du et al.
(2022), the BN layers was also removed, but it was only empirically found that BN was
not very helpful for the classification task, and no theoretical justification was stated.
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3.2 Network architecture

We used ResNet50 (He et al., 2016) as the basic architecture of the model with some
adjustments to enable it to handle the signal data from the experiments. Since the
input is an I/Q signal with a 2 × N format, we adjusted both the convolutional
layers and pooling layers to 1D, defined as ResNet50 1D. Specifically, according to the
previous section, we adapted the bottleneck layer in ResNet50 1D by replacing the BN
layers with the identity layers, and constructed an end-to-end denoised and classification
network, which reduces the influence of noise and improves the classification accuracy,
as shown in Figure 3.

Figure 3 Primitive and improved bottleneck architecture, (a) the primitive bottleneck in
ResNet50 1D (b) the improved bottleneck in ResNet50 1D (see online version
for colours)

(a) (b)

We used the weight averaging (Izmailov et al., 2018) technique and the averaging
method used was polyak averaging, which can also be referred to as EMA method, to
improve the classification accuracy of the model. EMA is an averaging method that
gives higher weights to recent data, which reduces the training time by reducing the
number of weight updates required, and utilises the parameters of sliding averaging to
improve model robustness and enhance the performance of the model on the training
set.
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4 Experiments

4.1 Datasets

We used the public dataset DeepSig RadioML 2018.01A in our experiments,
which is a famous and widely used dataset in the modulation recognition. This
dataset was generated by O’Shea et al. via GNU radio equipment, which takes
into account synthetic analog channel effects and airborne propagation losses, and
well reproduces signals in real environments (O’Shea et al., 2018). The dataset
contains 24 modulations including OOK, 4ASK, 8ASK, BPSK, QPSK, 8PSK, 16PSK,
32PSK, 16APSK, 32APSK, 64APSK, 128APSK, 16QAM, 32QAM, 64QAM, 128QAM,
256QAM, AM-SSB-WC,AM-SSB-SC, AM- DSB-WC, AM-DSB-SC, FM, GMSK,
and OQPSK. DSB-WC, AM-DSB-SC, FM, GMSK, and OQPSK, covering not only
simple modulation, but also high-order digital modulation. Each modulation contains
26 different SNR ranging from –20 dB to +30 dB in 2 dB steps, and each SNR for
each modulation contains 4,096 pieces of data, each of which is IQ data, with a sample
length of 1,024, and the dataset contains a total of 2,555,904 pieces of data. The signals
in Figures 1 and 2 are the 4ASK signals in this dataset. In the experiments, we first
classified the DeepSig RadioML 2018.01A dataset into 24 classes according to the
modulation mode, and then divided each modulated signal into 26 classes according
to the SNR. In accordance with the ratio of 7:1:2, the processed dataset is divided
into training set, validation set, and test set, and in order to avoid overfitting, data
enhancement was performed on the test set, including both flipping and masking.

Figure 4 Accuracy of 24-modulation for ResNet50 1D and VGG16 1D
(see online version for colours)

4.2 Results

We conducted the experimental on the same NVIDIA GeForce GTX 4090 GPU to
avoid errors in randomly dividing the dataset due to platform differences. The training
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set, validation set, and test set all include all 24 modulations and 26 SNR in the
DeepSig RadioML 2018.01A dataset which can improve the robustness of the network.
Firstly, we trained the network on the divided training set; secondly, we adjusted
the hyperparameters through the performance of the network on the validation set
to improve the network fitting ability; and finally, we tested the trained network on
the test set. In order to verify that the model capability is not the main factor to
improve the accuracy, we adapted the convolutional and pooling layers in the VGG16
network to 1-dimensional to get VGG16 1D, and conducted contrast experiments with
ResNet50 1D and VGG16 1D networks. The training epochs are 50, the batch size is
256 and the learning rate is 0.0001. A cosine simulated annealing method was used
to adjust the initial learning rate to 0.0001. To compensate for the regularisation effect
provided by the BN, we used the drop path method with the probability set to 0.4.
The training set, validation set, test set, and experimental steps used in the two sets of
experiments are the same, and only the network structure is different, and the results
are shown in Figure 4.

Figure 5 Accuracy of 24 modulations for three methods (see online version for colours)

In the meantime, we conducted contrast experiments to illustrate the noise suppression
effect that can be achieved by removing the BN layers. The first set of experiments uses
ResNet50 1D, and the second set of experiments uses the network structure described
in Subsection 3.2. To verify that the EMA method can improve the robustness of the
network, we setup a third set of experiments to train the network with the EMA method
based on the second set of experiments. The steps of the three sets of experiments are
the same, and the training parameters were consistent with the first experiment. We
performed three tests for each model, and the recognition accuracies in Figure 5 are
the average of the three experiments. It is obvious in Figure 5, the performance of the
network is somewhat improved by removing the BN layers; the classification accuracy
is higher for networks trained using the EMA method. Compared to ResNet50-1D, our
proposed method has improved accuracy on all SNR, and the accuracy exceeds 90%
at SNR greater than 6 dB. The accuracy of different methods at low SNR is shown in
Table 1.
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Table 1 Comparison of accuracy of different methods at low SNR

SNR (dB) DNCNet (Du et al., 2022) ResNet50 1D Proposed

–6 \ 25.05% 25.41%
–4 \ 32.89% 34.80%
–2 40.84% 43.03% 45.57%
0 56.49% 54.75% 57.42%
2 \ 64.02% 68.53%
4 83.83% 76.62% 83.80%
6 \ 85.65% 91.75%
Average 60.39% 59.94% 62.97%

Table 2 Comparison of computational effort between the two sets of experiments

Model Total parameters Time for each epoch (NVIDIA GeForce
(million) GTX 4090 GPU, minutes)

ResNet50 1D 34.749 12.8
Propose 34.696 11.4

Figure 6 Accuracy of 24-modulation for VGG16 1D and w/o BN (see online version
for colours)

Through Table 1, it is obvious that the accuracy of the model with the BN layers
removed is significantly improved at low SNR, and the average accuracy is improved
by 3.03% over ResNet50 1D and 2.56% over the method in Du et al. (2022). As
shown in Table 2, removing the BN layers reduces the amount of parameters of
the network, shortens the computation time, and reduces the computational burden.
Therefore, removing the BN layers can suppress high-frequency noise, improve the
model classification accuracy, and reduce the amount of computation. In order to verify
that this approach is not a special case on the ResNet structure, we also conducted the
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same experiment using the VGG network. We replaced the BN layers in VGG16 1D
with Identity layer. Two groups of experiments are also performed, the first experiment
adopts the VGG16 1D structure, and the second experiment adopts the above structure.
The training set, validation set, test set and experimental steps used are consistent with
the ResNet50 1D experiments, and the experimental results are shown in Figure 6.

In Figure 6, the classification effect of the model after removing the BN layers is
better than that of VGG16 1D, the accuracy is higher than that of VGG16 1D in the
whole SNR, and the classification accuracy is also higher than 90% when the SNR is
greater than 6 dB, and the average classification accuracy reaches 62.69%. Therefore,
removing the BN layers in the network structure can indeed suppress high-frequency
noise, improve the model performance and classification accuracy, and reduce the
amount of computation.

5 Discussion

The experimental results show that removing the BN layers improves the accuracy and
robustness of the radar emitter recognition model. First, BN helps the model to better
utilise the high-frequency information, while the noise in the radar signal is mostly in
the high-frequency part. Therefore, removing BN can suppress the network’s focus on
high-frequency information, which achieves the denoising effect. Secondly, removing
BN forces the model to learn a more stable internal representation rather than relying on
the statistical properties of each batch of data, making the model more robust. Although
removing BN may make training more difficult, the model is able to achieve better
performance through drop path regularisation, hyperparameter tuning, and EMA training
strategies. Finally, removing BN also reduces the number of parameters in the model,
which reduces the memory footprint and computational costs.

Through Figures 5 and 6, it can be found that although removing the BN layers
improves the overall classification accuracy of the model, the classification accuracy of
the model is not high when the SNR is lower than –10 dB. This is because when the
SNR is very low, the power of the signal is also very low relative to the noise power.
Even if the high-frequency noise is removed, the low-frequency part of the noise is still
dominant and the signal is basically annihilated by the noise, so it is difficult to separate
it from the noise. Therefore, in the case of a very low SNR, not only is it necessary to
remove the high-frequency noise, but also other methods are needed to distinguish the
low-frequency part of the signal from the noise in order to improve the classification
accuracy.

6 Conclusions

In this paper, we proposed to remove the BN layers in the model to suppress the
noise, constructed an end-to-end radar emitter denoising and recognition model, and
improved the accuracy of the model recognition, especially to enhance the accuracy
at low SNR situations. The experimental result showed that our proposed method
achieved an average accuracy of 62.97% on the DeepSig RadioML 2018.01A dataset
with SOTA results, and the classification accuracy of the model was improved with a
lower SNR, while reducing the computation and training time of the model. Through
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experiments using VGG16, it was verified that removing the BN layers in the network
structure can effectively suppress the noise and improve the model performance. In
addition, our study demonstrates the potential of DL in dealing with complex signal
processing problems, especially when traditional signal processing methods encounter
bottlenecks. The strategy of removing BN and adjusting other hyperparameters shows
that the design of DL models can be flexibly adapted to fit the needs of a specific task,
which provides new perspectives for future model design. And we will investigate the
denoising algorithm in the case of very low SNR in our future work to further improve
the classification accuracy.
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