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Abstract: Face parsing involves segmenting a face into various semantic 
regions, but challenges such as complex structures, varying poses, and 
occlusions make achieving high performance difficult, even for state-of-the-art 
methods. To address these challenges, we propose FP-Transformer, a novel 
architecture that combines CNNs and Transformer to extract both long-range 
and short-range features. Our design includes: 1) a U-shaped Encoder-Decoder 
with hierarchical feature fusion and hybrid attention blocks for semantic 
learning; 2) convolution-based patch embedding and merging to retain edge 
information; 3) a novel Bunch-layer normalisation (BLN) to maintain 
consistent normalisation across patches. Experiments on CelebAMask-HQ and 
LaPa datasets demonstrate the effectiveness of our approach, achieving mean 
F1 scores of 87.1% and 92.6%, respectively. Our model performs robustly even 
under occlusions, extreme poses, and complex backgrounds. 

Keywords: face parsing; face analysation; face segmentation; self-attention 
mechanism. 
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1 Introduction 

Face parsing, which refers to the task of segmenting a face into different semantic 
regions, has become increasingly important in various computer vision applications. It is 
a fundamental task that provides the basis for a wide range of downstream applications, 
such as facial analysis (Zheng et al., 2021; Wood et al., 2021), face recognition 
(Umirzakova and Whangbo, 2022), and face editing (Lee et al., 2020). A good face 
parsing method can accurately partition a face into several regions, including the skin, 
hair, eyes, nose, mouth, and eyebrows, and can provide rich information about the 
structure and appearance of a face. 

With the rapid advancement of deep learning, deep convolutional neural networks 
(CNNs) have become a popular choice due to their excellent feature learning capabilities. 
This has led to their widespread use in various facial recognition tasks (Jayaraman et al., 
2020), especially in face parsing task (Guo et al., 2018; Jackson et al., 2016; Lin et al., 
2021; Liu et al., 2017, 2015; Luo et al., 2020; Zhou et al., 2017, 2015). Despite recent 
advances in face parsing CNN-based methods, there are still some challenges that need to 
be addressed. One of the main challenges is small receptive field of convolution 
operators, make the methods (Jackson et al., 2016; Lin et al., 2021; Liu et al., 2017; Luo 
et al., 2020; Zhou et al., 2017; Guo et al., 2018), based on CNN lack the ability to model 
long-range contextual information, which can hinder face segmentation performance. For 
instance, existing methods fail to accurately parse faces that are captured at extreme 
angles or that are partially occluded by objects or other people, as shown in Figure 1 row 
(a). Row (a) contains the failed samples of Y. Lin’s method (Lin et al., 2021). To address 
this issue, Jackson et al. (2016), Liu et al. (2015) and Zhou et al. (2017) combine CNNs 
and CRFs to learning the long-range information. However, these methods do not 
consider the correlation among various objects. Te et al. (2020), Zheng et al. (2022) and 
Te et al. (2021) exploit the relations between regions for face parsing by modelling GCN 
(Zhang et al., 2019), which shows a great performance on reasoning the region-level 
information to get the information between different facial parts. Nevertheless, to 
enhance performance, the sizes of these models and their computational complexity have 
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increased significantly. The numbers of parameters and MACs for EHANet (Luo et al., 
2020), which is based on CNN, are 43.9M and 11.5G calculated by using  
pytorch-opcounter. The numbers of parameters for EAGR (Te et al., 2020), AGRNet 
(Zheng et al., 2022), DML-CSR (Te et al., 2021) with GCN are 66.61 M, 66.42 M and 
67.94 M. MACs of them are 236.41 G, 205.14 G and 252.58 G. However, these methods 
still predict some failure sample, as shown in Figure 1 row (b). Row (b) contains the 
failed samples of DML-CSR (Te et al., 2021), shows that in scenarios with complex 
backgrounds, low lighting and facial obstructions, existing methods often become misled, 
confusing actual facial features with similar elements in the background or obstructions 
in front of the face. 

To address these issues, we design a transformer-based model to improve long-range 
information extraction ability of face parsing model. Transformer-based models, are a 
popular type of deep learning models that have been proposed for natural language 
processing tasks (Wu, 2024). Inspired by the Transformer architecture, the development 
of the vision transformer (ViT) architecture (Dosovitskiy et al., 2020), has shown 
promising results in various computer vision tasks by dividing images into  
non-overlapping patches and treats them as sequence elements, including image 
classification (Wu et al., 2021; Liu et al., 2021; Wang et al., 2021; Touvron et al., 2021; 
Chen et al., 2021), object detection (Dai et al., 2021a, 2021c; Zhu et al., 2020), face 
recognition (Ge et al., 2023; Song et al., 2022) and semantic segmentation (Zheng  
et al., 2020; Xie et al., 2021; Woo et al., 2023; Cheng et al., 2022; Mallick et al., 2023; 
Zhang et al., 2023). However, few have applied transformer-based models to facial 
parsing tasks. FaRL-B (Zheng et al., 2021) relies on huge Transformer model and both 
image and language datasets for multimodal training, which is hard to train and inference. 
Consequently, there is a need for a novel architecture tailored specifically for face parsing 
tasks that addresses these limitations while harnessing the power of the Transformer 
architecture. 

Figure 1 Failure samples from existing face parsing methods (see online version for colours) 
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In this paper, we propose a novel end-to-end face parsing method based with Multi-Head-
Self-Attention mechanism (Wu, 2024). Our model is a U-shaped Encoder-Decoder 
architecture (Siddique et al., 2021) that incorporates hierarchical feature extraction. The 
Multi-Head Self-Attention mechanism (Wu, 2024) and CNN are combined in each 
attention block to capture both long-range and short-range relationships in face images. 
Additionally, the patch merging operation (Liu et al., 2021; Wang et al., 2021) and non-
overlapping patch embedding (Dosovitskiy et al., 2020), which are ineffective at 
capturing positional information for different patches and fine-grained details, are 
replaced by CNN to retain the position information between different image patches or 
tokens. To decrease the parameters of our model, we adopt the window self-attention. 
Meanwhile, due to the integration of CNNs, fewer attention blocks are needed for 
shifting attention windows, as in Swin (Liu et al., 2021), which significantly decreases 
the complexity of our model.  Additionally, during our experiment, we observed that the 
original LayerNorm employed in the ViT architecture (Dosovitskiy et al., 2020) 
normalises the embeddings of individual image patches independently. Therefore, we 
propose a new normalisation layer, termed bunch layer normalisation (BLN), designed to 
replace LayerNorm and optimise internal covariate shift and thereby ensure the 
normalisation consistency of the relevant patches (tokens) and improve the model’s 
overall performance. To further enhance the model’s representation capacity, we employ 
feature fusion module (FFM) (Dai et al., 2021b) that merge features across different 
resolutions. Our proposed innovative aggregation of techniques aims to address the small 
receptive field limitation associated with CNNs, as well as the computational intensity 
and complexity commonly found in ViT architectures, making our model both efficient 
and effective for face parsing tasks. 

The main contributions of this paper are as follows: 

1 We introduce a hybrid, end-to-end face parsing model that fuses CNNs and 
Transformers, influencing the attention mechanism for short-range feature capture, 
and augment the novel Long-short block with U-shape and convolution layers for 
fine-grained feature extraction. 

2 Convolutional patch merging operation and convolutional patch embedding are 
designed to retain the positional information between different image patches or 
tokens, which are crucial for precise face parsing but are often lost in the original 
patch merging and patch embedding processes.  

3 BLN has been designed to replace LayerNorm. BLN executes normalisation across 
all correlated patches, which is an operation more frequently encountered in 
computer vision tasks. 

4 Our method attains an average F1 score of 92.6% on the LaPa dataset and 87.1% on 
the CelebAMask-HQ dataset, all while utilising fewer computational resources, 
shown as Figure 2. The circle size of our model is smaller than others, which means 
our model has less MACs counts. A wide range of experiments confirms the 
efficiency and robustness across a range of face parsing tasks of our proposed 
method. 
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Figure 2 Model performance and complexity (see online version for colours) 

 

2 Related work 

Face Parsing: The field of image segmentation (Zhao et al., 2023; Ji and Zhong, 2024; 
Minaee et al., 2020; Yu et al., 2023) has seen considerable advancements in recent years, 
with deep neural network being proposed. The existing literature on face parsing is 
extensive and focuses particularly on utilising CNN based model. Zhou et al. (2017) 
incorporated features derived from CNN into the conditional random field (CRF) 
framework to characterise individual pixel labels and their adjacent relationships. Jackson 
et al. (2016) introduces a CNN cascade that uses pose-specific landmarks for semantic 
part segmentation, marking the first exploration of the relationship between pose 
estimation and segmentation. Luo et al. (2012) constructed a hierarchical framework by 
integrating multiple independent deep networks. Zhou et al. (2015) employed a 
concatenation of input image pyramids with various feature maps to enhance scale 
invariance within the network. They introduced an interlinked convolution neural 
network (iCNN) for face parsing. The iCNN consists of multiple convolution layer taking 
input in different scales, and a special interlinking layer allows the CNN to exchange 
information, enabling them to integrate local and contextual information efficiently. The 
model uses extensive downsampling and upsampling in the interlinking layers, which is 
different from traditional CNN. Lin et al. (2019) proposed a novel RoI Tanh-warping 
operator that combines central and peripheral vision. This operator addresses the 
challenge of focusing on a limited region of interest (RoI) while also considering an 
unpredictable surrounding context. Their hybrid convolution neural network (CNN) for 
face parsing uses local methods for inner facial components and global methods for outer 
facial components, providing a balanced approach to face parsing. Nevertheless, CNN 
architectures exhibit limitations in capturing global or long-term feature representations, 
primarily due to constraints associated with their receptive field. In response to this 
challenge, several researchers have proposed alternative architectural designs to augment 
the capability of long-term feature extraction. Liu et al. (2017) introduced a face parsing 
algorithm that combines hierarchical representations learned by a CNN and accurate label 
propagation achieved by a recurrent neural network (RNN). Their RNN-based 
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propagation approach enables efficient inference over a global space with the guidance of 
semantic edges generated by a local convolution model, offering a unique perspective on 
face parsing. Te et al. (2020) import graph convolution network (GCN) into face parsing 
task. They proposed adaptive graph representation learning and graph reasoning over 
facial components. Edge Aware Graph Reasoning (EAGR) module, proposed in their 
paper, learns representative vertices that describe each component and exploits the 
component-wise relationship to produce accurate parsing results from face image and 
edge map. Zheng et al. (2022) introduces the decoupled multi-task learning with cyclical 
self-regulation (DML-CSR) for face parsing, addressing challenges like spatial 
inconsistency and boundary confusion by employing a multi-task model and a dynamic 
dual GCN. The method utilises cyclical self-regulation for model refinement and has 
demonstrated state-of-the-art performance on datasets such as CelebAMask-HQ, and 
LaPa. These studies highlight the significance of establishing connections between 
various facial components, a fundamental aspect of our approach. However, for face 
images with extreme poses, occlusions, and complex backgrounds, these methods still 
incorrectly segment faces, while also experiencing increased computational complexity 
and model sizes. 

Vision transformer: Dosovitskiy et al. (2020) is the first to employ a pure transformer 
structure, termed vision transformer (ViT), directly to feed sequences of image patches 
for computer vision tasks in ViT. Specifically, ViT breaks down each image into a fixed-
length sequence of tokens (non-overlapping patches) and then employs multiple standard 
Transformer layers. These layers include the multi-head self-attention module (MHSA) 
and the positionwise Feed-forward module (FFN) to process these tokens. Demonstrating 
superior performance compared to existing state-of-the-art convolution networks, ViT 
achieves these results with significantly less training resources, especially when pre-
trained on extensive datasets and adapted to various image recognition benchmarks. In 
order to reduce computational complexity, researchers have attempted to modify ViT by 
utilising experience from the CNN structure. Pyramid vision transformer (PVT), is a 
backbone network for various dense prediction tasks, designed by Wang et al. (2021) to 
overcome the limitations of using Transformers like ViT for vision tasks. PVT is capable 
of high-resolution outputs and reduced computational costs by using a progressive 
shrinking pyramid. Yuan et al. (2021) finds the origin tokenisation of input images fails 
to model the important local structure. Motivated by CNN architecture, they propose 
tokens-to-token ViT, which can structure the image to tokens by recursively aggregating 
surround tokens into one token. Touvron et al. (2021) delves deeper into data-efficient 
training and distillation for ViT. This study explores the efficient integration of CNNs 
and Transformers to effectively model both local and global dependencies for image 
classification. The conditional position encoding visual transformer (CPVT), designed by 
Chu et al. (2021), substitutes the predefined positional embedding in ViT with 
conditional position encoding (CPE). This adaptation allows Transformers to handle 
input images of any size without the need for interpolation. Wu et al. (2021) introduce 
convolutional token embedding and convolutional projection in ViT to employs all the 
benefits of CNNs: local receptive field, shared weights and spatial subsampling, while 
keeping advantages of Transformer. Liu et al. (2021) presented the Swin-Transformer, 
incorporating a window multi-head self-attention (W-MSA) module with relative 
position bias, aimed at mitigating computational complexity. Furthermore, they indicated 
that with appropriate adjustments, W-MSA can achieve performance equal to or even 
surpassing that of traditional global self-attention after reducing computational 
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complexity. FaRL-B is one of the few successful cases of applying transformers to face 
parsing, thanks to the highly parameterised ViT and extensive multi-modal training with 
both image and language datasets. Apparently, the size of FaRL-B and the vast amount of 
training data make this approach highly impractical to implement. 

3 Methodology 

Figure 3 The network architecture of the components of FP-transformer (see online version  
for colours) 

 

3.1 Overall 

FP-Transformer is inspired by the popular Swin-Transformer (Liu et al., 2021), which 
pioneered the concept of shifted window attention and UniNext’s (Lin et al., 2023) 
validation of window attention further confirms its effectiveness, supporting the approach 
used in our face parsing method. Meanwhile several modified improvements have been 
incorporated in our proposed architecture. Figure 3(a) shows the overall pipeline of  
FP-transformer. It is a modified U-shaped network with our LS block, which contains a 
long-short attention block. We just give a face image I(x) and face mask groudtruth M(x), 
and calculate the Focal loss (Lin et al., 2016) to train our model. Convolutional patch 
embedding, convolutional patch merging, long-short attention block, and BLN will be 
introduced in the following sections. 
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3.2 Convolution operation 

Contrary to the initial patch embedding and patch merging used in the Swin Transformer, 
our approach employs convolution layers to strengthen the connectivity among adjacent 
pixels, which tends to be disrupted when the image is directly divided into smaller 
patches. As shown in Figure 4, for origin patch embedding method, only the relationships 
between pixels within a patch are preserved, while the information of adjacent pixels 
outside of the patch (indicated by the red and green parts) is discarded. The lost 
information is crucial for face segmentation, which depends on the connectivity between 
pixels, and its absence adversely affects segmentation accuracy. Consequently, desired by 
Wu et al. (2021), we replace the original patch embedding with a convolution layer 
capable of gathering information from surrounding pixels. Traditional patch embedding 
simply rearranges the data, while convolutional patch embedding introduces additional 
computational overhead. However, for image-related tasks, convolutional patch 
embedding proves more effective as it better preserves the relational information between 
image patches. The convolution layer is brought in not only to improve the extraction of 
local spatial features by combining a pixel’s information with its surroundings but also 
allows us to abandon position embedding, due to the structural information preserved by 
the convolution operation. Formally, given a face image H W C

faceX × ×∈  as input, f(…) 

is convolution layer with s × s kernel, 
2
s 

  
 stride and 

2
s 

  
 padding. The token map is 

ˆˆ ˆ( ) H W C
Imagef X × ×∈  with height and weight 

2 22 2
ˆ ˆ1 , 1

2 2

H s W s
s sH W

s s

      + − + −         = + = +   
      
            

 (1) 

For the patch merging process, our objective remains consistent. We employ convolution 
layers to simultaneously extract short-range features and reduce the size of the feature 
map. Both convolutional patch embedding and convolutional patch merging can improve 
the overall model’s ability to interpret the information among adjacent pixels. 

When a convolutional layer is added to the patch embedding and patch merging 
process, each patch or token contains information from both the positionally adjacent 
patches or tokens and itself. There is no need to shift attention window to contain the 
long-range information extraction ability, as in Swin transformer. Therefore, while a 
single LS block is used to extract features for different resolution feature maps, the 
corresponding Swin architecture requires two Swin blocks. If we use original Swin-T for 
448 × 448 inputs to construct a U-shaped model, the number of parameters and MACs 
will be about 41.3 M and 35.1 G, which is more complex than ours. 
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Figure 4 The difference between origin patch embedding and convolutional patch embedding 
(see online version for colours) 

 

3.3 Bunch layer normalisation 

Layer normalisation (LN) (Ba et al., 2016) is the common choice in ViT models. The 
formulation of LayerNorm used in origin ViT can be expressed as: 

[ ] ,
[ ]

b l cx E xy γ x
Var x ε

× ×−= ∗ + ∈
+

β  (2) 

where x is the input feature map, E[x] and Var[x] means the mean and standard deviation 
computed along the axis c, γ and β are learnable parameters, and l = h × w (height and 
width). In a ViT, the input feature map consists of a series of tokens derived from 
tokenising image patches. Consequently, each token originating from the same image 
exhibits distinct expected E[x] and Var[x]. This means that identical regions of a facial 
image, when tokenised into separate tokens, will experience varying alterations as they 
pass through LN. In other way, the contrast and luminance relationships among image 
tokens become obscured after LN., and this is the reason why we utilise BLN in our 
paper. In BLN, we compute mean and standard deviation on tokens from same image. 
The formulation can be expressed as: 

1

1

, ,

m
lb ci ii m

i
m

ii

x E x
y γ x X X

Var x ε

× ×=

=

 −   = ∗ + ∈ ∈
  +  




β  (3) 

where xi is a patch of an image, X is an image sample. The distinctions between BLN and 
LN are illustrated, and the impact of these two normalisation methods is demonstrated in 
Figure 5. The input image is divided into patches and separately processed through BLN 
and LN layers. According to Figure 5, the reconstructed outputs reveal that LN obscures 
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facial details, making key features like eyes, nose, and mouth difficult to discern. In 
contrast, although some texture information is lost with BLN, it retains the structural 
information of faces. Facial components have more defined edges, preserving crucial 
information for segmentation tasks. 

Figure 5 Illustration of BLN and LN, and the contrasting effects on the feature map subsequent 
to each normalisation layer (see online version for colours) 

 

This indicates BLN is more suited for computer vision tasks where local spatial 
relationships are important. The facial reconstructions demonstrate these differences, 
with BLN better retaining semantic facial structures. 

3.4 Long-short range attention block 

Multi-headed self-attention (MHSA) (Wu, 2024) is the core component of the attention 
block in the original Transformer architecture. MHSA enables the model to learn 
multiple representations and capture different contextual relationships for each token. By 
using multiple parallel attention heads, rather than a single head, MHSA allows the 
Transformer to encode more complex interactions and subtle nuances in the input data. 
This gives the transformer greater expressive power to model the myriad relationships 
between image tokens in an image. The flexibility of multi-headed attention provides the 
Transformer with much of its representational capacity and has been key to its 
effectiveness on many sequence modelling tasks. The formula of attention is: 

( )1( , , ) , ..., O
hMultiHead Q K V Concat head head W=  (4) 

( ) ( )( )
, ,

TQ k
i iQ K V V

i i i i
k

QW KW
Attention QW KW VW softmax VW

d

 
 =  
 

 (5) 

where , , b l dQ K V × ×∈  is projection of input feature map ,b h w cX × × ×∈  d is the 

dimension of the feature, projections are parameter matrices ,model kd dQ
iW ×∈  

,model kd dK
iW ×∈  model vd dV

iW ×∈  and .v modelhd dOW ×∈  
Our proposed architecture differs from the traditional transformer block. As 

mentioned, the attention block in transformers models relationships between tokens 
rather than information within each token. In addition to the ConvPatchEmbedding and 
ConvPatchMerge layers we introduce, we design a parallel structure of CNN and 



   

 

   

   
 

   

   

 

   

    A light end-to-end comprehensive attention architecture 99    
 

    
 
 

   

   
 

   

   

 

   

       
 

attention blocks. This allows the model to jointly extract both inter-token relationships 
via attention, and feature representations within tokens via CNN. While the attention 
block models contextual interactions between tokens which is long-range feature, the 
CNN extracts localised visual features within each token which is short-range feature. By 
complementing attention with a CNN branch, our model can simultaneously learn  
cross-token relationships (long-range feature) and fine-grained local details (short-range 
feature). This hybrid CNN and attention design represents a departure from relying only 
on self-attention in standard transformer blocks. 

As illustrated in Figure 3, we utilise a bottleneck structure (He et al., 2015) in the 
CNN branch to reduce the feature dimension. This bottleneck design, commonly 
employed in ResNet architectures, uses a 1 × 1 convolution to decrease the number of 
channels followed by 3 × 3 convolutions. The bottleneck allows the CNN branch to 
operate on lower-dimensional feature maps, decreasing computational cost. By 
referencing the bottleneck structure from ResNet, we provide clarity on how the feature 
dimensions are adjusted within the CNN component of our proposed model. 

Let x denote the input feature map, Δ is the operation to reshape b l cx × ×∈  into 
,b l w cx × × ×∈  and Δ–1 means reshaping b h w cx × × ×∈  into .b l cx × ×∈  The forward pass of 

bottleneck brunch can be described as: 

( )( )( )( )1Δ Δ ( )x GELU BLN bottleneck x−′ =  (6) 

and the forward pass of the long-short range attention block can be described as: 

, , Φ ( ), Φ ( ), Φ ( )
( , , )

q k v

output

Q K V x x x

x MutliHeadAttention Q K V x x

=
′= + +

 (7) 

Window attention was introduced by Liu et al. (2021) in the Swin Transformer 
architecture to reduce the computational complexity of global self-attention. This is done 
by limiting self-attention to local, non-overlapping windows of M x M patches. The 
authors also used shifted windows between stages to enable connectivity between  
non-overlapping windows. However, in our proposed model, we leverage several other 
techniques to capture inter-window information. Specifically, our ConvPatchEmbedding, 
ConvPatchMerge layers, and bottleneck structure within our attention block provide 
mechanisms to extract features across windows. Therefore, we can simply utilise fixed 
window attention without shifted windows while still encoding relationships between 
different spatial regions. The proposed components allow connectivity between  
non-overlapping windows, reducing the need for explicitly linking windows as done in 
Swin Transformer. Our model extracts inter-window information via convolution 
operations rather than shifted windows. We analyse the FLOPs of using two Swin 
transformer blocks versus long-short range attention block to compare the computational 
complexity of the two structures. Specifically, the FLOPs for two Swin transformer 
blocks are 24 × H × W × C2 + 4 × M2 × H × W × C, while the combination of one Swin 
transformer block and one long-short range attention block reduces the complexity to  
17 × H × W × C2 + 2 × M2 × H × W × C. The results show that two Swin transformer 
blocks have higher complexity as they involve more C2 and M2C terms. This indicates 
that introducing the long-short range attention block can effectively reduce computational 
complexity while potentially providing performance improvements. 



   

 

   

   
 

   

   

 

   

   100 C. Han et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

3.5 Feature fusion 

Because of the ConvPatchMerge operation in our hierarchical architecture, information 
for higher resolution feature maps can be dropped. These features provide necessary 
information for generating face parsing prediction at corresponding resolution. Taking 
inspiration from U-net (Ronneberger et al., 2015), we use skip connection between 
corresponding resolution feature maps to allow model to propagate lost information, 
shown in Figure3(a). Furthermore, during our experiments, we found that doing feature 
fusion among different resolution in up-scaling process can improve the model 
performance. We use attention feature fusion (Dai et al., 2021b) as feature fusion module 
using multi-scale channel attention. To more comprehensively integrate the two different 
features, we combine global attention and local attention to obtain enriched feature 
representations, better capturing complex contextual information. Based on these 
features, we compute the weights of the two features, enhancing the differences and 
complementarities between them, thereby achieving a more effective feature fusion. 
Specifically, given feature maps x1 and x2 (x2 is the smaller one), we firstly use a 
convolution layer fproj(·) to scale x2 to the same resolution as x1. Then the multi-scale 
channel attention can be presented as: 

( ) ( ) ( )( )1 2 1 2 1 2x x x x GAP x x+ = + ⊕ +M L g  (8) 

where L(·) denotes local attention (Conv-Bn-Relu-Conv), g(·) denotes global attention 
(Conv-Bn-Relu-Conv), GAP(·) is global average pooling. And the fused feature Z can be 
describe as: 

( ) ( )( )( )1 2 1 1 2 21Z x x x x x x= + ⊗ + − + ⊗M M  (9) 

4 Experiments 

Datasets. Our experiments performed on CelebAMask-HQ (Lee et al., 2020) and LaPa 
(Liu et al., 2020). The CelebAMask-HQ is one of the most commonly used datasets for 
face parsing and it contains 24,183, 2,993, 2,824 images for training, validation and 
testing with labels: background, facial skin, left or right brow, left or right eye, nose, 
upper or lower lip, inner mouth, hair, left or right ear, eye-glass, earring, necklace, neck 
and cloth. The LaPa dataset consists of more than 22,000 facial images with abundant 
variations in expression, pose and occlusion, and each image of LaPa is provided with a 
11-category pixel-level labels including the first ten labels of CelebAMask-HQ dataset. 
And there are 18,176 samples for training, 2,000 samples for validation and 2,000 
samples for testing. Figure 6 illustrates the frequency of occurrence in the training sets of 
CelebaAMask-HD and LaPa. Label distribution in LaPa is more uniform compared to 
CelebAMask-HQ. Notably, the frequency of samples for eye glasses, hats, and necklaces 
is lower than samples for other common categories, posing a greater challenge for the 
face parsing task. 
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Figure 6 Label occurrence frequency of CelebAMask-HD and LaPa train sets (see online version 
for colours) 

 

Implementation details 

Our method, built on PyTorch Vision 1.12.1 with Ubuntu 20.04, is trained from the 
ground up on four 2080Ti GPU cards, with no pre-training involved. The input images 
are sized at 448 × 448 for both the training and testing phases. Our model is exclusively 
trained on the train set, with evaluations and tests carried out on the validation and test 
sets. For data augmentation during training, we employ random rotation within (–20°, 
20°), random shearing, random contrast adjustment, and random colour jittering. The 
mini-batch size is set at 8 per GPU card, totalling 32, and we enhance this further to a 
total batch size of 160 through gradient accumulation. The model is trained for 200 
epochs, with the learning rate initially set at 5e-4 and gradually reduced to 1e-5. For 
transformer structure, we set patch size and window size for window attention to 4 and 7. 
Embedding dimensions in four hierarchical stages are set to 96, 192, 384 and 768. 
Feature map sizes in four hierarchical stages are 56, 28, 14 and 7. And the heads number 
of four hierarchical stages are set to 1, 3, 6, 12. 

Evaluation metrics 

In this paper, to maintain consistency in comparisons with prior research, we calculate 
the mean F1 score for both the CelebAMask-HD and LaPa datasets, considering all facial 
components and excluding the background. 

TPprecision
TP FP

=
+

 (10) 

TPrecall
TP FN

=
+

 (11) 

21 precision recallF
precision recall
∗ ∗=

+
 (12) 
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Table 1 Input size, parameters and MACs for several models calculated by using pytorch-
opcounter 

Setting Input size Param MACs 
Ours 448 × 448 29.15 M 22.05 G 
DML-CSR (Zheng et al., 2022) 473 × 473 67.94 M 252.58 G 
AGRNet (Te et al., 2021) 473 × 473 66.42 M 205.14 G 
EAGR (Te et al., 2020) 473 × 473 66.61 M 236.41 G 
EHANet (Luo et al., 2020) 256 × 256 43.90 M 11.50 G 

4.1 Comparison with advanced model 

In this paper, we compared proposed method with existing SOTA methods (Zhao et al., 
2017; Liu et al., 2020; Te et al., 2020; Zheng et al., 2022; Lee et al., 2020; Wei et al., 
2019; Luo et al., 2020; Te et al., 2021; Lin et al., 2021) on CelebAMask-HQ and LaPa 
datasets. Tab.3 and Tab.2 present a statistical comparison, highlighting the notable 
advancements achieved by our methods. The FP-transformer attains mean F1 scores of 
87.1% on CelebAMask-HQ and 92.6% on LaPa, respectively. From Tables 2 and 3, it 
can be observed that the FP-transformer consistently outperforms other methods in most 
categories. Additionally, since the Lapa dataset has more balanced label distributions and 
fewer categories, models trained on the Lapa dataset achieve higher F1 scores for 
categories such as nose, mouth, and glasses. In contrast, models trained on the 
CelebAMask-HQ dataset exhibit lower F1 scores for these categories. Without using data 
augmentation and class weighting strategies, categories with fewer samples, such as 
glasses, necklaces, and earrings, tend to have relatively lower F1 scores. However, our 
model still demonstrates better performance in these categories compared to previous 
algorithms. Additionally, Tab.1 compares the input size, parameters, and MACs counts of 
various methods using pytorch-opcounter. This comparison reveals that the  
FP-transformer requires fewer resources and lowers computational complexity than other 
state-of-the-art methods. Figure 7 displays the visual outcomes of our methods compared 
to DML-CSR by Zheng et al. (2022), which previously showed the best performance on 
LaPa and CelebAMask-HQ. In Figure 1 our algorithm demonstrates superior 
performance on samples where other algorithms fail, showcasing its ability to segment 
faces more accurately. The first row presents the original RGB images of faces. The 
second row depicts the ground truth. In the third row, we see the unsuccessful results 
from Zhang et al.’s method in scenarios with complex backgrounds, low lighting, and 
facial obstructions. The fourth row illustrates the outcomes of our method, showcasing 
improved performance on these challenging samples. Our LS attention ensures the 
extraction of relationships for long-term features while preserving local features, 
enhancing the robustness of our method in challenging situations. It is evident that our 
method demonstrates greater robustness in complex scenarios involving multiple people, 
varied lighting, angles, and facial expressions. Notably, in images with sophisticated 
backgrounds or facial obstructions, our method appears more adept at differentiating 
facial features from the surrounding elements. 
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Table 2 Comparison in LaPa with SOTA methods in mean F1 

Method Sk Ha LE RE UL Mo LL No LB RB Mean 
F1 

Zhao et al. 
(2017) 

93.5 94.1 86.3 86 83.6 86.9 84.7 94.8 86.8 86.9 88.4 

Liu et al. 
(2020) 

97.2 96.3 88.1 88 84.4 87.6 85.7 95.5 87.7 87.6 89.8 

Te et al. 
(2020) 

97.3 96.2 89.5 90 88.1 90 89 97.1 86.5 87 91.1 

Zheng et al. 
(2022) 

97.6 96.4 91.8 91.5 88 90.5 89.9 97.3 90.4 90.4 92.4 

Te et al. 
(2021) 

97.7 96.5 91.6 91.1 88.5 90.7 90.1 97.3 89.9 90 92.3 

Lin et al. 
(2021) 

97.8 96.5 91.5 90.9 88.7 90.5 90.5 96.9 90.1 89.1 92.5 

Our method 97.9 96.8 91.1 90.9 88.0 91.0 90.0 97.2 91.1 90.9 92.6 

Notes: SK denotes skin. Ha denotes hair. LE and RE mean left and right eye. LB and RB 
mean left and right brow. Mo denotes mouth. UL and LL mean upper and lower 
lip. No denotes nose. 

Table 3 Comparison in CelebAMask-HQ with SOTA methods in mean F1 

Method Skin 
Mou 

Nose 
UL 

Gl 
LL 

LE 
Hair 

RE 
Hat 

LB 
ER 

RB 
NL 

LR 
Nk 

RR 
Cl 

Mean 
F1 

Zhao et al. 
(2017) 

94.8 90.3 75.8 79.9 80.1 77.3 78.0 75.6 73.1 76.2 
89.8 87.1 88.8 90.4 58.2 65.7 19.4 82.7 64.2  

Lee et al. 
(2020) 

95.5 85.6 92.9 84.3 85.2 81.4 81.2 84.9 83.1 80.3 
63.4 88.9 90.1 86.6 91.3 63.2 26.1 92.8 68.3  

Wei et al. 
(2019) 

96.4 91.9 89.5 87.1 85.0 80.8 82.5 84.1 83.3 82.1 
90.6 87.9 91.0 91.1 83.9 65.4 17.8 88.1 80.6  

Luo et al. 
(2020) 

96.0 93.7 90.6 86.2 86.5 83.2 83.1 86.5 84.1 84.0 
93.8 88.6 90.3 93.9 85.9 67.8 30.1 88.8 83.5  

Te et al. 
(2020) 

96.2 94.0 92.3 88.6 88.7 85.7 85.2 88.0 85.7 85.1 
95.0 88.9 91.2 94.9 87.6 68.3 27.6 89.4 85.3  

Te et al. 
(2021) 

96.5 93.9 91.8 88.7 89.1 85.5 85.6 88.1 88.7 85.5 
92.0 89.1 91.1 95.2 87.2 69.6 32.8 89.9 84.9  

Zheng, et al. 
(2022) 

95.7 93.9 92.6 89.4 89.6 85.5 85.7 88.3 88.2 86.1 
91.8 87.4 9.01 94.5 88.5 71.4 40.6 89.6 85.7  

Our method 96.7 94.3 92.5 90.4 90.4 86.7 86.7 89.1 88.8 87.1 
92.9 89.9 91.5 95.6 88.1 69.5 46.5 91.3 86.8  

Notes: GL denotes glasses. LE and RE mean left and right eye. LB and RB mean left and 
right brow. LR and RR denote left and right ear. Mou denotes mouth. UL and LL 
mean upper and lower lip. ER means earring. NL mean necklace. NK means neck. 
CL means cloth. 
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Figure 7 Visual comparison between ours method and existing SOTA method (see online version 
for colours) 

 

4.2 Ablation study 

Analysis of improvement. To demonstrate the impact of various components, we 
sequentially integrate our modules into the baseline model, evolving from a pure swin 
transformer to our proposed model. We begin with a pure swin transformer, comprising 1 
Swin blocks at each stage with LayerNorm, as the baseline. This is followed by the 
incremental addition of convolution operations (ceasing the use of shifted windows), 
feature fusion, BLN, and our long-short attention (LS attention) block. As shown in Table 
4, the baseline model utilises the Swin block without the shifted window mechanism. The 
performance improves progressively with the addition of convolutional operations, 
feature fusion, BLN, and LS Attention. Specifically, the full model, which incorporates 
all these components, achieves the highest results on the CelebAMask-HQ dataset, with a 
mean F1 score of 87.09 (an improvement of +2.86) and a mIoU of 79.40 (an 
improvement of +2.95) compared to the baseline. These results demonstrate that the 
integration of these features effectively enhances the model’s performance in facial 
parsing tasks. 
Table 4 Ablation study 

Baseline Conv 
operation 

Feature 
fusion BLN LS 

attention 
CelebAMask-HQ 

Mean F1 mIoU 
     84.23 76.39 
     84.43(+0.20) 76.95(+0.48) 
     84.67(+0.43) 77.21(+0.72) 
     85.86(+1.63) 78.25(+1.76) 
     86.22(+1.99) 78.67(+2.18) 
     87.09(+2.86) 79.40 (+2.95) 

To further explore the different between LS attention and traditional attention block, we 
draw the GradCam (Selvaraju et al., 2017) visual explanations for the traditional attention 
block, LS attention block, self-attention branch and CNN branch in LS attention block. 
The brighter a pixel is, the greater its relevance to a specific category. Figure 8 presents a 
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series of Grad-CAM visualisations that illustrate the pixel-level contribution towards 
identifying the nose region in facial recognition tasks using various attention 
mechanisms. Specifically, Figure 8 displays the heatmap generated by a traditional 
attention mechanism, revealing where the model focuses when determining the nose area. 
The CNN branch within the LS attention block targets local features, primarily 
highlighting the edges of various facial parts, thereby aiding the LS attention block in 
more accurately predicting nose components. Meanwhile, the self-attention branch in LS 
attention has a broader focus, encompassing several larger areas. This feature enables the 
LS attention block to better extract relationships between different facial parts. Following 
the integration of information from both branches, LS attention achieves more robust and 
precise detection of the nose. This not only enhances the accuracy of its positional 
information but also improves the delineation of the nose’s shape and edge. 

Figure 8 Grad-Cam images comparison between traditional attention and LS attention  
(see online version for colours) 

 

The traditional column represents the Grad-CAM visualisations derived from the 
traditional self-attention block, while the LS Attention column corresponds to the outputs 
of the Long-Short Range Attention Block. The attention branch and CNN branch 
columns display the Grad-CAM visualisations of the respective branches. It can be 
observed that the attention branch focuses more on global information, whereas the CNN 
branch captures facial edge details. These complementary features enable the LS 
Attention Block to produce outputs with sharper and more distinct partition boundaries. 

5 Conclusions 

This paper presents the FP-transformer, a comprehensive end-to-end face parsing model 
based on transformer. Extensive experiments conducted on CelebAMask-HQ and LaPa 
demonstrate the effectiveness and precision of our proposed method. The results 
consistently indicate that the FP-transformer substantially enhances face parsing 
performance, largely attributable to our proposed modules. Particularly, the Long-short 
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attention block introduced in this model effectively augments the local feature extraction 
capabilities of conventional attention blocks, enabling transformer-based models to more 
accurately predict the edges of different facial parts. 
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