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Abstract: Condition monitoring of reciprocating compressors (RC) can 
improve reliability of equipment operation. To address the problem of 
unsatisfactory monitoring accuracy of the existing RC start-up monitoring 
methods, the common types of failures were first analysed to obtain the 
external influencing factors. Second, the overall architecture of RC starter fault 
monitoring was designed based on the shock pulse sensor to obtain the intrinsic 
signal data of the RC starter. The internal and external influence data were then 
pre-processed, the main variables were extracted using principal element 
analysis, and the variables were decomposed into eigenmode components using 
an improved empirical modal decomposition method. Finally, the extreme 
learning machine (ELM) algorithm (OLEM) is optimised by the regularisation 
term, and the RC start-up fault state is predicted using OLEM. The 
experimental outcome indicates that the proposed method has a monitoring 
accuracy of 92.5% and has a strong monitoring capability. 

Keywords: reciprocating compressor; RC; fault monitoring; principal element 
analysis; empirical modal decomposition; EMD; extreme learning machine; 
ELM. 
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1 Introduction 

Reciprocating compressor (RC) is an indispensable unit in chemical production, due to its 
complicated structure, numerous moving parts, and many sources of vibration shocks, 
resulting in a high frequency of failures, various types of failures and complex vibration 
response (Almasi, 2016). There is no heating equipment in all the machine rooms of 
Tower One Union, and the ambient temperature is only 10℃ in winter when there is a 
unit running in the machine room, and the oil temperature of the standby unit is around 
15℃, due to the low ambient temperature in winter and the fact that the external 
circulating heater cannot be heated up for a long period of time to run. In winter, it takes 
about 2 hours to warm up the unit from the point of running button to loading. If the unit 
fails to shut down and needs to be urgently backed up to another unit to ensure the 
volume of gas lift, the pressure of gas lift will drop drastically due to the long loading 
time, which not only directly affects the production of Taizhong oil and gas management 
area, but also has the risk of causing the shutdown of wells. RC start-up failure not only 
affects the normal process of oil production (Qi et al., 2018), but also leads to the leakage 
of hazardous gases in serious cases, resulting in a series of malignant failures such as 
fires, explosions, and other injuries and deaths (Wang et al., 2022). Therefore, it is of 
great significance to carry out fault diagnosis of compressor start-up. 

The traditional RC monitoring method installs sensors on the compressor to collect 
real-time data on operating conditions; the collected data is transmitted to the monitoring 
system for storage and analysis, and the results are used to assess the compressor’s 
operating condition and performance, as well as whether there is a risk of failure. 
However, the monitoring is not timely and accurate, and is highly influenced by 
environmental factors. Deep learning-based fault monitoring methods have better 
generalisation ability because they do not require pre-extraction of features and their 
parameters are automatically tuned. Sharma and Parey (2019) extracted the fault 
characteristics of valve wear by using empirical modal decomposition (EMD), wavelet 
packet, and other methods, and established a comprehensive evaluation of valve wear 
failure index. Pichler et al. (2016) used wavelet transform to pre-process the sensor 
signals, converting the original signal into multiple detailed signals, then extracting fault 
features from them, and finally inputting the extracted feature values into a support vector 
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machine, but the classification accuracy is not high. Nwakpang et al. (2019) performed 
numerical simulations of the secondary RC and achieved fault diagnosis by monitoring 
the instantaneous angular velocity and energy. Patil et al. (2021) used a generalised data 
mining model to monitor all faults in the RC by analysing the signals from the collected 
sensors, but the monitoring was not satisfactory. Loukopoulos et al. (2019a) established a 
test bed for analysing the wear mechanism of RCs and used oil analysis to evaluate their 
wear state, which does not allow for timely diagnosis of faults. 

The deep learning-based fault monitoring method does not need to extract features in 
advance and its parameters have the characteristics of automatic tuning, so its 
generalisation ability is better. Lu and Wang (2021) collected the common faults of RCs 
and identified their fault characteristics and corresponding fault types, and utilised a 
combined BP neural network for fault diagnosis of RC starters. Ahmadianfar et al. (2022) 
established an improved adaptive neuro-fuzzy inference fault diagnostic system for RCs 
and applied it to mining air compressors. Cervantes-Bobadilla et al. (2023) used  
radial-based neural networks to make initial diagnoses of multiple bodies of evidence and 
then synthesised the results of each initial RC diagnosis using weighted evidence fusion 
theory, but the accuracy of the diagnoses was not high. Loukopoulos et al. (2019b) fused 
SOM neural network with BP neural network for nine types of faults in RC, and 
optimised the fusion algorithm using differential evolutionary algorithm, and the 
monitoring accuracy of this method reached 85% after experiments. 

All of the above methods have the defects of slow training speed and more human 
intervention in the training process. In order to address the above issues, extreme learning 
machine (ELM) has emerged, which requires almost no human intervention and has 
higher learning efficiency and generalisation performance (Ding et al., 2014), and 
therefore has attracted a lot of attention from researchers recently. Medina et al. (2022) 
used principal component analysis (PCA) and ELM to analyse the dissolved gas in oil 
from various sensor data sets to diagnose early RC faults, and compared the results with 
those of fuzzy logic and BPNN, which showed better diagnostic effect of ELM. Wu et al. 
(2023) used variational modal decomposition (VMD) to extract features from the 
vibration signals of the sensors of the unit, and then the acquired multi-domain RC 
features were transmitted to ELM for fault classification. 

By analysing the above research status, it can be seen that the existing research leads 
to inefficient monitoring due to the high complexity of input variables. Focusing on the 
above issues, this paper innovatively uses the data from shock pulse sensors (SPSs) as 
input variables and optimise the ELM algorithm using regularisation terms to achieve 
efficient monitoring of RCs. Firstly, this paper analyses and elaborates the five common 
fault types and gives the corresponding coping strategies, so as to obtain the external 
influencing factors of the RC starter. On this basis, the overall architecture of RC start-up 
fault monitoring is designed by optimising the acquisition frequency and distribution 
method of SPSs in fault monitoring to obtain the intrinsic signal data of RC start-up 
obtained from sensor monitoring. The external influences and intrinsic data are then  
pre-processed, and the main variables are extracted using principal meta-analysis, and the 
improved EMD method is used to reduce the complexity of the input variables by 
decomposing the main variables into a series of intrinsic modal (IMF) components. 
Finally, the ELM algorithm (OLEM) is optimised by the regularisation term, and the 
network parameters are reduced to enhance the stability of the model, and the OLEM is  
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used to predict the failure state of the RC starter. The experimental outcome indicates that 
the monitoring accuracy of the proposed method is 92.5%, which is improved by  
5%–20% compared with the other four models, and the monitoring results of the 
proposed method are in line with the actual situation, which can better realise the fault 
monitoring of the RC starter. 

2 Relevant theoretical foundations 

2.1 Principle of operation of RCs 

RC, also known as piston compressors, are volumetric compressors (Winandy et al., 
2002). RCs have a complex mechanical structure and a variety of designs, but their core 
components are more or less the same, consisting of seven main parts: the body, the drive 
mechanism, the cylinder and piston, the valve, the sliding sealing parts, the lubrication 
system and the cooling system. When the crankshaft rotates, the piston is driven 
downward by the connecting rod and the cross head. In the compression process, with the 
upward movement of the piston, the volume in the cylinder gradually decreases, the gas 
is compressed, and the pressure rises. At this time, the suction valve is closed to prevent 
gas backflow, while the exhaust valve is still closed, so that the gas continues to be 
compressed in the cylinder. When the gas pressure in the cylinder reaches or exceeds the 
exhaust pressure, the exhaust valve opens, and the gas is discharged from the cylinder 
and enters the exhaust pipe. With the continuous rotation of the crankshaft, the piston 
moves back and forth in the cylinder, constantly repeating the process of suction, 
compression and exhaust. The task workflow can be divided into four processes: gas 
expansion, suction, compression and discharge (Marchante-Avellaneda et al., 2023), and 
the cylinder oiling process is shown in Figure 1. 

1 Gas expansion: the crankshaft rotates, driving the connecting rod to make the piston 
reciprocating motion, which causes the effective volume of the cylinder to increase, 
the working pressure decreases, so that the gas continues to expand. 

2 Intake gas: When the operating pressure is reduced to a pressure slightly lower than 
the actual pressure of the gas in the intake tube, the gas in the intake tube pushes off 
the intake gas control valve and enters the cylinder. It enters the cylinder with the 
piston and continues until the piston reaches the end of the left side. 

3 Compression: As the piston moves freely to the right, the effective volume of the 
cylinder is gradually reduced and the rest of the compression workflow is carried 
out. The non-return action of the gas intake control valve will prevent the gas in the 
cylinder from backing up into the inlet tube. 

4 Discharge of gas: With the piston moving to the right side, the working pressure of 
the compressed gas is higher than the actual pressure of the gas in the outlet pipe, 
and the gas in the cylinder starts to be continuously discharged. Each reciprocating 
cycle of the piston gradually develops into a cyclic working condition, and the 
effective distance passed by the piston each time it comes or goes back is the stroke. 

 



   

 

   

   
 

   

   

 

   

   76 C. Pan et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 1 The cylinder oiling process (see online version for colours) 
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2.2 Extreme learning machine 

Aiming at the existing deep learning algorithms which have the problems of long training 
time and simple to fall into native minima, Huang et al. (2006) designed a single 
obscured-level feed-forward neural network ELM with faster training speed and less 
human intervention, which contains an input level, a obscured level and an output level. 
Compared to deep neural networks such as BPNN and CNN, ELM uses fewer 
parameters, has excellent generalisation ability, and can show better prediction 
performance on sample data. 

First, given an ELM network with l obscured level neurons and activation function 
g(x), a training set 1{( , ) | }N

i i iS x t ==  containing N arbitrary and non-repeating samples is 
input to the ELM network for training. In this case, the ELM model is denoted as Hβ = T, 
and the obscured level output matrix H is calculated as follows: 

( ) ( )

( ) ( )

1 1 1 1

1 2

1 1

, , , ,

, , , ,

l l
TT T T

N

N l l N N l

g w b x g w b x
H h h h

g w b x g w b x
×

 
 = =    
  


   


 (1) 

where w is the weight and b is the bias, and the commonly used activation functions are 
Tanh and ReLU. The implicit layer output of each node of the ELM is as follows, where  
i = 1, 2, …, L. 
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( )
1

L

i i N i N
i

G a x b t
=

⋅ + =β  (2) 

In order for the trained ELM network to fit all the training samples, the error among the 
network output and the actual is required to be minimised. In addition, to reduce the 
computational complexity, the minimum norm least squares solution (LS-Norm) 
ˆ H T+=β  is solved by the generalised inverse theory, where H+ = (H+H)–1H+ is the 

generalised inverse of H. 
For LS-Norm, it satisfies the minimum training error as a least squares solution, as 

shown in equation (3). 

( ) ( )1 1 1 1ˆ, ..., , , ..., min , ..., , , ...,l l l lH w w b b T H w w b b T− = −
β

β β  (3) 

3 Typical faults of RC start-up and improvement measures 

The mechanical structure of RC is complex, and there are many parts, resulting in the 
complexity of the fault. Therefore, the analysis of common RC faults is the basis of fault 
diagnosis. Through literature review, field data analysis and discussion with field 
technicians, the causes of several major fault types and their countermeasures are 
summarised. 

1 Air lifter malfunction. The air lift opens and closes automatically in response to 
changes in air pressure in the cylinder, and an intake or discharge valve needs to be 
opened and closed once during a compressor operating cycle. If the unit fails to shut 
down and needs to be transported to another one to ensure the amount of gas lift in 
an emergency, the pressure of gas lift will drop sharply due to the long loading time, 
generally from 10.95 Mpa to 9.2 Mpa. Failure of gas lift may lead to the cylinder 
temperature, vibration abnormality, insufficient gas pressure and other problems. To 
shorten the warm-up time of winter start-up, wrap 60 W electric heat tracing around 
the lower part of the crankcase and add heat preservation at the same time to increase 
the insulation effect of the crankcase lubricating oil. Can also be outside the 
circulation pump inlet line loaded with heat and heat preservation, to ensure that in 
the cycle of heating does not cause heat loss. 

2 No oil flow failure. The gas lift compressor of Tower One Union is located in the 
desert hinterland, and the temperature is low in winter. Together with the lack of 
heating facilities in the plant, it has a greater impact on the fluidity of the lubricant. 
The unit has been running for more than 16,400 hours, with a total of 42 shutdowns 
due to no oil flow failure, resulting in an annual venting of about 28,000 cubic 
metres. This unit operates as a gas lift to increase the gathering rate and requires  
one hour for troubleshooting in the event of a failure, affecting oil production by 
approximately 18 tons. In response to the failure, all the way to the oil supply to  
two-way oil supply, oil supply line before and after the filter element to increase the 
ball valve, increase the ball valve can be realised without stopping the clogging of 
the filter element to clean the situation. Through this optimisation and modification 
of no oil flow failure downtime from 10 times in 2022 to 1 time in 2023. At the same 
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time, it provides a guarantee for the completion of the user’s production tasks, as 
shown in Figure 2. 

Figure 2 No oil flow failure shutdown response strategies (see online version for colours) 

  
3 Failure of packing. The packing is tightened radially by the axial force of the 

cylinder head to achieve the goal of sealing to prevent the compressed gas from 
leaking in the direction of the piston rod. The packing box is subjected to huge 
pressure difference and thermal load for a long time, and it is very easy to fail due to 
serious wear and tear over a long period of time. A cut-off valve is added at the  
2-stage washing tank discharge line to connect to the vent line, and the cut-off valve 
is slightly opened to bring out the system liquid when the unit is running, and the 
valve is closed when the unit is on long-term standby. 

4 Slideway failure. The diameter of the oil path from the elevated oil tank to the inlet 
of the single pump is too small, and at the same time, the lubricant viscosity is high 
and the circulation is small, resulting in the oil supply not being able to keep up.  
The elevated mailbox to the oil injection pump oil collection body at the pipeline 
diameter increased from 10 mm to 22 mm; oil circuit design is unreasonable, 
resulting in pre-lubrication oil injection pump and oil injection single pump two oil 
circuit tampering pressure. Increase the check valve at the convergence of the two oil 
circuits to avoid pressure. 

5 Piston ring failure. The temperature of the piston rod has been abnormally high for 
many times, and the highest temperature detected has reached 185°C. There have 
been problems such as packing ring flanging, packing seal failure, localised 
carbonisation of lubricant at high temperatures, and bluing of piston rod. Increase the 
bore clearance by 0.16–0.20 mm, and also increase the clearance of the first straight 
opening ring of the sealing ring by 0.20 mm. In addition, the materials of the main 
sealing ring are all PEEK, which has poor thermal conductivity, and change the 
support ring in the main sealing ring to brass, which has good thermal conductivity. 

By comprehensively analysing and deducing the working principle, structural 
characteristics and performance in practical applications of the above RCs, and 
combining with the existing research (Lu and Wang, 2021), the influencing factors of RC 
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starter, including temperature, pressure, noise, etc., can be obtained and denoted as x1, x2, 
…, xn. 

4 General architecture of SPS-based RC start-up fault monitoring 

After obtaining the influencing factors of RC start-up failures, it is essential to 
accumulate the operational information of the RC in order to understand the condition 
and damage of the RC for subsequent monitoring models. The SPS is a type of sensor 
used for condition monitoring (Iqbal and Israr, 2021), which collects signals from the 
device in order to identify possible safety risks in the RC. The SPS has a high frequency 
response compared to other sensors and is highly sensitive to small vibration and shock 
signals. This allows it to capture weak signals that conventional sensors may miss, thus 
providing more comprehensive monitoring data. The overall architecture is shown in 
Figure 3. 

Figure 3 SPS-based fault monitoring framework for RC starters (see online version for colours) 
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Due to the wide variety of signals collected by conventional SPS, the overlap of different 
signals can lead to diagnostic errors. For this reason, this paper optimises the SPS for 
fault monitoring. 

1 Optimise the acquisition frequency of the SPS. The SPS uses a high-speed sampling 
rate, and if the acquisition frequency is too low, it will not be able to acquire enough 
data, making it tough to perform defect monitoring. Thus, the acquisition frequency 
of the SPS needs to be optimised to ensure that enough data can be acquired. 

 2 (2 )2sF ω D πf Da= =  (4) 

 where Fs is the acquisition frequency of the SPS; w is the angular frequency; D is the 
displacement; f is the frequency; and a is the acceleration. 

2 Optimise the distribution method of SPS. In the monitoring process, the distribution 
point mode of SPS can be reasonably arranged according to the structure and 
operation of RC. This can minimise the interference between data collection points 
and improve the data collection efficiency. Since the standard rod and the SPS 
contact surface have equal force at both ends, the force distribution points of the 
sensor are as follows. 

[ ]( ) ( ) ( )I RF t σ t σ t A= +  (5) 
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 where σI(t) is the incident value, σR(t) is the reflected stress value, and A is the 
calibration value. σI(t) and σR(t) are calculated as shown in equation (6) and equation 
(7), respectively. 

1
1 1

( )( ) ( )
g g

U tσ t E ε t E
S K

= ⋅ = ⋅  (6) 

( )( ) ( ) R
R R

g g

U tσ t E ε t E
S K

= ⋅ = ⋅  (7) 

 where E is the correction variable; ε1(t) is the incident signal; εR(t) is the reflected 
signal; U1(t) is the incident voltage signal generated by the strain. 

5 RC start-up fault monitoring based on limit learning machine 

5.1 RC start-up fault input variable pre-processing based on principal element 
analysis approach 

Focusing on the issue that the high complexity of input variables in the current RC  
start-up fault monitoring method leads to low monitoring accuracy, a sensor- and  
ELM-based RC start-up fault monitoring method is designed. Firstly, PCA is used to 
eliminate irrelevant variables, then Gaussian white noise is introduced into the traditional 
EMD algorithm to improve it (EEMD), EEMD is used to decompose the main input 
variables to reduce the complexity of input variables, and finally ELM is used to predict 
the failure type of RC starter by using the improved ELM with regularisation term. The 
overall flow is shown in Figure 4. 

Figure 4 The overall flow of the designed RC starter fault monitoring 

Internal and 
external 

influences

PCA extraction 
of the main 
variables

EMD adds 
Gaussian white 

noise

EEMD 
decomposition of 

main variables

Extracting the 
IMF component 
energy signature

1x

2x

nx

...

1

2

n

1

j

l

i

...

...

lb

jb...

lb

1

m

...

n

...

1y

my

ny

Input layer

Obscured layer

Output RC startup 
fault monitoring 

results

 

RC starters involve external influences as well as internal operating data (temperature, 
pressure, etc.), and these variables are large enough to form an unrecognisable database. 
Therefore, the use of PCA (Beattie and Esmonde-White, 2021) eliminates irrelevant 
variables and reduces the complexity of the input variables In the RC start-up process 
there are hundreds of different parameters, how can the main variables be accurately 
extracted need to use the PCA method. The purpose of calculating the principal elements 
is to determine the primary and secondary status of the principal elements based on the 
influencing factors and the magnitude of the variance of the kinetic parameters. 
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Assuming that the RC is in a normal state during operation, the data samples 
collected at this time are n groups, denoted as 1 2  ... [ ],nx x x x=  and the sample data set 
consisting of m-dimensional variables is X ∈ Rm×n. In order to eliminate the influence of 
the variable’s magnitude, the standardisation of X is performed. Let X  be the normalised 
data matrix as follows. 

( ) 1/2T
m sX X I m D−= −  (8) 

where Im is an m-dimensional column vector with all elements being 1; u = [u1, u2, …, 
un]T is a vector of sample means; and 2 2 2

1 2( , , , )s nD diag s s L s=  is the sample variance 
matrix. 

The process of eigenvalue decomposition of the covariance matrix S of X is actually 
the process of principal element analysis modelling, and S can be expressed as follows: 

TX XS
m l

=
−

 (9) 

The eigenvalue decomposition of S has Spi = λipi, i = 1, 2, …, n, where λi is an 
eigenvalue, pi is an eigenvector, and there is λ1 ≥ λ2 ≥ ∙∙∙ ≥ λn, and the corresponding 
eigenvector is p1, p2, …, pn. The data matrix can be decomposed in terms of principal 
elements as follows: 

TT TX TP TP TP E= + = +  (10) 

where T is the principal score matrix, T  is the residual score matrix, E is the residual 
term, P is the principal loading matrix, P  is the residual loading matrix, and k is the 
number of principal elements. 

If the residual term of equation (10) is removed, only the k principal elements are 
retained, resulting in a PCA model. 

1 21 2
T T T T

k PkX TP x p x p x p X≈ = + + + =  (11) 

The main input variable for RC starter failure can be obtained as {x1, x2, …, xk} by the 
above equation. 

5.2 Variable feature extraction based on improved EMD 

There is a large amount of noise interference in the input variables of RC starter, resulting 
in the intrinsic mode function IMF after EMD decomposition (Li et al., 2021) containing 
interference components, which affects the accuracy of fault diagnosis. Therefore, the 
EMD is improved and the reconstructed variables are formed into an input matrix to 
realise signal-noise separation and thus realise the noise reduction of variables. The IMF 
components after EEMD decomposition have modal attributes, and the energy 
characteristics of the IMF components of the main influencing variables of the RC 
initiator are used as the extracted features. The Gaussian white noise is added to the 
original variables to obtain the signal to be decomposed. 

( ) ( ) ( )i ix t x t h t= +  (12) 
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where hi(t) is the Gaussian parameter added to the ith decomposition; t is the random 
variable; and x(t) is the source variable. The decomposition of the variables to be 
decomposed using EEMD is as follows: 

1

( ) ( ) ( )
K

i ij i
j

x t c t r t
=

= +  (13) 

where cij(t) is the jth component of the ith decomposition; K is the mode number; ri(t) is 
the residual component of the ith decomposition. The new components are obtained by 
summing the obtained components as follows, where N is the number of variables. 

1

1( ) ( )
N

j ij
i

c t c t
N =

=   (14) 

The EEMD decomposition values were subsequently obtained as follows: 

1

( ) ( ) ( )
K

j
j

x t c t r t
=

= +  (15) 

where cj(t) is the jth IMF component and r(t) is the residual component. 

Find the energy 2

1

n

i ik
k

E x
=

=  of each IMF component, where xik is the amplitude of 

the discrete point of the ith IMF component, sum Ei to calculate the total energy 

2

1

,
N

i
i

E E
=

 
=   

 
  and replace the previous energy feature Ei with the normalised energy 

ei = Ei / E , and finally get the extracted feature as F = [e1, e2, …, eN]. 

5.3 RC start-up fault monitoring based on improved ELM 

The traditional ELM algorithm is proposed based on the principle of empirical risk 
minimisation, which is highly influenced by the amount of features, and the algorithm 
becomes unusually complex to deal with these features, resulting in overfitting. 
Therefore, the stability of the model is improved by limiting the complexity of the 
algorithm and reducing the parameters of the network by adding a regularisation term 
that represents the structural complexity to the objective function, which is as follows. 

2 21min
2 2regular i
CL ξ = + 

 
   

β
β  (16) 

where β = HTH, H are the hidden layer output matrices, ξi is the training error of the ith 
sample, and C is the regularisation parameter, which represents the weight of the training 
error and algorithm complexity in the loss function. The constrained optimisation 
problem of equation (16) is transformed into a pairwise optimisation problem to obtain 
the following objective function. 

( )( )( )2 2
, , 1 1

1min
2 2

N N T
dual i ij i j ij ij
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= =

 = + − − + 
 

   
β α

β α β  (17) 
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where α is the Lagrange multiplier, β is the connection weight between the implicit level 
and the jth output node, and the corresponding optimisation constraints are as follows: 

( )
1

0
N Tdual T

j i i
ij

L h x H
=

∂ = → = → =
∂ β α β α
β

 (18) 

0dual
i i

j

L Cξ
ξ

∂ = → =
∂

α  (19) 

( )0 0dual T T
i i i

j

L h x t ξ∂ = → − + =
∂

β
α

 (20) 

Bringing equation (18) into equation (19) yields the following equation. 

( )

( )

1 1 1 1 0
...

0

T T T

T T T
N N N N

h x H Cξ t ξ

h x H Cξ t ξ

 − + =


 − + =

 (21) 

Let 1 21 2[   ... ], [ ( ) ( ) ... ( )]T T T
NNT t t t H h x h x h x= =  and write [(I / C) + HHT]α = T by 

combining T and H. Equation (22) can be derived. 
1

T TIH HH T
C

−
 = + 
 

β  (22) 

The final classification function for RC start-up fault monitoring is derived as follows. 
1

( ) ( ) T TIf x h x H HH T
C

−
 = + 
 

 (23) 

where x is the feature extracted from the main input variables and is the final RC start-up 
fault monitoring result. 

6 Experimental results and analyses 

In this paper, the Tarim Oilfield Tarzhong oil recovery and gas management area Tarim 
Yilian DTY1400H 240 × 240 × 145 × 145 gas lift compressor as the RC, impact pulse 
sensors to monitor the RC at all levels of cylinder inlet pipe and exhaust pipe temperature 
packing box leakage and so on, and real-time monitoring of the temperature changes, as 
shown in Figure 5. Heating for 40 minutes at 18:50 on the same day, the temperature 
went to 37°C and dropped to about 23°C at 4:00 AM. Heating for 40 minutes at  
4:00 AM, the temperature dropped to 21°C at 11:00 AM, and returned after 11:00 AM as 
the ambient temperature increased. A total of 590 sets of laboratory information is 
adopted as training data of A1, A2, A3, and A4. Among them, 400 sets of data are selected 
for the normal state A1, 50 sets of data are chosen as each of defect condition of A2, A3, 
and A4 as the training data, and 10 sets of data are chosen for each state as the 
examination data. This resulted in 550 sets of training data and 40 sets of examination 
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data. 40 sets of instances were adopted to test the SOELM-trained defect diagnosis 
method. A description of SOELM monitoring results is shown in Table 1. 

Figure 5 Real-time monitoring of temperature changes (see online version for colours) 

  
MATLAB was chosen for the test platform, the amount of output neurons was set as 4, 
the Sigmoid operation was chosen as the stimulation operation, and the number of 
neurons in the obscured level was 75. The monitoring results of the OELM are implied in 
Figure 6. By adopting the trained OELM method to diagnose every defect type with ten 
sets of test data, the test outputs were compared and organised in terms of the 
fundamental that the test outputs are turned to binary codes, which has already been set 
up in the previous section. The accuracy of fault monitoring for types A1, A2, A3 and A4 
was 100%, 90%, 100% and 80% respectively. In summary, the ultimate outcome is that 
37 groups of data were accurately diagnosed and three groups of data were incorrectly 
diagnosed, thus it could be deduced that the ultimate defect monitoring accuracy rate 
obtained from the test diagnosis of 40 groups of test data is 92.5%. 
Table 1 Description of SOELM monitoring output results 

SOELM monitoring outputs 
State of health 

A1 A2 A3 A4 
0 0 0 1 Well-being 
0 0 1 0 A2 fault 
0 1 0 0 A3 fault 
1 0 0 0 A4 fault 

To further validate the effectiveness of the proposed monitoring method SOELM, 
SOELM was compared with the IU-ANN method (Cervantes-Bobadilla et al., 2023), the 
MRCVF method (Loukopoulos et al., 2019b), the RCCP method (Medina et al., 2022), 
and the GFDSD method (Wu et al., 2023). GFDSD method (Wu et al., 2023) were used 
for comparison experiments, and the metrics chosen were monitoring accuracy, MAE, 
R2, and AUC of curved surface area under the ROC line. The results of the monitoring 
accuracy of different methods are shown in Table 2.The monitoring accuracy of SOELM 
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was 92.5%, which was improved by 20%, 12.5%, 7.5%, and 5% compared with  
IU-ANN, MRCVF, RCCP, and GFDSD, respectively. SOELM was developed by fusing 
the external factors and the sensor data as the input variables, utilising the PCA to remove 
the redundant variables, and by EEMD for the decomposition of input variables reduces 
the complexity of input variables. And it also improves the ELM, which greatly improves 
the accuracy of RC starter fault monitoring. 
Table 2 Monitoring accuracy of different methods 

Method Total number of test 
samples 

Correctly identify 
the sample size 

Number of 
misidentified samples Accuracy 

IU-ANN 40 29 11 72.5% 
MRCVF 40 32 8 80% 
RCCP 40 34 6 85% 
GFDSD 40 35 5 87.5% 
SOELM 40 37 3 92.5% 

Figure 6 SOELM fault monitoring results (see online version for colours) 
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Comparisons of F1, MAE, R2, and AUC for the different methods are shown in Table 3. 
The MAE for SOELM is 0.1235, which is at least 29.9% lower compared to the other 
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four models. R2 is the coefficient of determination, and the closer it is to 1, the better the 
fit. The R2 of SOELM is 0.9712, which is closest to 1, and the fitting degree of 
monitoring results is the highest. Compared with the AUC of the other four methods, the 
AUC of SOELM was increased by 17.59%, 9.16%, 4.6% and 1.2% respectively.  
IU-ANN and MRCVF only considered the external factors affecting RC failure, but did 
not consider the sensor data, resulting in poor monitoring performance. RCCP and 
GFDSD do not improve ELM and EMD, resulting in lower monitoring performance than 
SOELM. According to the above analysis, the monitoring performance of SOELM is the 
best. 
Table 3 Comparison of monitoring performance indicators of different methods 

Method IU-ANN MRCVF RCCP GFDSD SOELM 
MAE 0.3514 0.2965 0.2108 0.1762 0.1235 
R2 0.8104 0.8745 0.9120 0.9527 0.9712 
AUC 0.8369 0.9015 0.9408 0.9724 0.9841 

7 Conclusions 

RC is a key equipment in the production process of petrochemical enterprises, and it is 
crucial to ensure its safe operation. In order to solve the problems of high complexity of 
input variables and low monitoring accuracy of existing RC start-up monitoring methods, 
a sensor and ELM based RC start-up fault monitoring method is designed. Through the 
analysis of common failure types and their response strategies, the external influencing 
factors of RC starters are summarised. Secondly, the acquisition frequency and 
distribution method of the SPS are optimised, based on which the overall architecture of 
RC starter fault monitoring is designed to obtain the intrinsic signal data of the RC starter 
and improve the data acquisition efficiency. The external influences and intrinsic data 
were then pre-processed to reduce the complexity of the input variables by eliminating 
irrelevant variables using PCA and decomposing the main variables into a series of IMF 
components using the EEMD method. Finally, the ELM algorithm (OLEM) is optimised 
by the regularisation term, and the network parameters are reduced to improve the 
stability of the model, and the OLEM is used to predict the defect state of the RC starter. 
The experimental outcome implies that the proposed method has a high monitoring 
accuracy and can greatly improve the monitoring efficiency of EC starters. 
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