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Abstract: The challenge of beat identification in piano teaching has 
progressively taken the stage as intelligent education technology develops 
quickly. Most of the conventional beat detection systems ignore the link 
between the video information and the player’s motions by depending just on 
the analysis of auditory data. Based on the spatio-temporal two-branch 
attention mechanism, this work presents a piano beat detection model called 
TempoNet to increase the accuracy and robustness of beat identification. By 
means of the spatio-temporal dual-branching attention mechanism, the model 
efficiently captures the temporal features in the audio signal and the dynamic 
spatio-temporal features in the video signal by deep fusion of the two-modal 
information. Comparatively to conventional approaches, the suggested 
TempoNet model shows better beat identification accuracy and robustness 
according to experimental results on several test datasets. 
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1 Introduction 

Intelligent teaching systems have attracted a lot of attention in the world of education as 
artificial intelligence technology – especially the broad application of deep learning in 
many spheres – develops rapidly (Chen et al., 2020; Timms, 2016). With the growing 
student count and need for individualised learning in music education – especially in 
piano instruction – the conventional teaching approach is confronting considerable 
difficulties. Learning piano not only depends on students’ knowledge of notes and 
melodies but also pays more attention to the development of rhythmic sense and 
precision of playing (Ivanova et al., 2020). A fundamental ability in piano study, beat  
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detection is absolutely important for students’ learning effect and musical expression. 
The development of intelligent piano teaching systems depends much on accurate beat 
recognition since it not only improves students’ sense of rhythm but also increases the 
fluency and expressiveness of their playing. 

Past studies have mostly concentrated on the processing and analysis of audio signals 
in order of beat recognition (Ismail et al., 2018). The conventional beat recognition 
systems mostly rely on signal processing approaches. Usually, these techniques 
concentrate on extracting rhythmic aspects from audio recordings and using time-
frequency domain analysis to estimate beats. When confronted with intricate music 
environments, these techniques are vulnerable to noise interference and environmental 
changes, hence their recognition accuracy decreases (Kujala and Brattico, 2009). 
Furthermore, the audio signal itself does not directly correlate with the performer’s 
movement, hence these techniques are sometimes challenging to handle challenging 
circumstances including background noise or multi-player performance. 

As deep learning technology develops constantly, more research aiming at beat 
recognition using neural network models is undertaken (Liu et al., 2017). Because of their 
better feature learning and time series data processing, convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs) have become common alternatives for 
beat recognition activities. Especially models based on RNNs and long short-term 
memory networks (LSTMs) can efficiently capture the temporal information in audio 
signals, thereby enhancing the accuracy of beat prediction. Although these techniques 
have some acceptance results by learning the temporal characteristics of audio signals, 
their performance in long time periods or high noise situations usually seems to be 
unreliable. 

Recent researchers have progressively shown, when compared with single-modal 
audio signal processing techniques, the improvement of multimodal learning for beat 
recognition tasks (Ivanko et al., 2023). Particularly in the performance of musical 
instruments like the piano, where the video can record not only the note changes but also 
significant elements like the player’s hand motions, posture, and facial expressions, the 
introduction of video information offers fresh approaches for beat recognition. These 
dynamic visual cues can improve the model’s capacity to fit challenging playing 
situations and balance the auditory information. Some researchers have effectively raised 
the accuracy and robustness of beat identification by mixing audio and visual for 
multimodal learning (Dogan and Akbulut, 2023). Still, the current multimodal techniques 
fall short in fully using the possible spatio-temporal correlation between audio and video 
information and in simpler fusion algorithms and insufficient information interaction. 

In recent years, the wide application of attention mechanisms in deep learning 
provides an effective solution for multimodal learning. In particular, the spatio-temporal 
attention mechanism can automatically learn and capture the information of key moments 
in temporal data, so as to give higher weights to important features in audio and video. 
This mechanism can help the model to better focus on the key time points of rhythmic 
information and improve the recognition accuracy. Therefore, the spatio-temporal dual-
branching attention mechanism becomes a potential innovative direction for multimodal 
beat recognition. 

There are still certain issues even if the studies mentioned above offer several 
theoretical bases and technical tools for beat identification (Au and Kauffman, 2008). 
Most of the current approaches either limit to one analysis of audio data or the merging of 
multimodal information is not yet ideal. Furthermore limiting their generalisability in 
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actual applications are most of the current models, which are tailored for certain datasets 
or scenarios and lack some generalising capacity. 

Aiming to improve the accuracy and robustness of beat recognition by means of the 
fusion of multimodal information and deep learning of spatio-temporal features, this 
study proposes a piano teaching-assisted beat recognition model based on spatio-temporal 
dual-branching attention mechanism based on the above issues. Combining  
spatio-temporal dual-branching attention mechanism with the joint modelling of audio 
and video helps the model suggested in this work to not only precisely identify beats but 
also sustain effective recognition performance in challenging playing environments. 

The main innovations include: 

1 Design of spatio-temporal dual-branch network architecture. In this work, we design 
a spatio-temporal dual-branch network architecture which first performs dynamic 
weighted fusion via the attention mechanism after processing audio and visual input 
through two branches independently. This architecture improves the accuracy of beat 
detection by learning the characteristics of audio and video modalities independently 
and simultaneously enhances the feature extraction of important time points and key 
frames through the spatio-temporal attention mechanism. 

2 Deep fusion of multimodal information. This work suggests a new multimodal 
information fusion technique merging audio and video inputs to completely use their 
complimentary information. Combining the note timing information in the audio 
signal with the hand movement and playing gesture information in the video signal 
helps to greatly increase the accuracy of beat identification and get over the 
constraints of the single-modal approach in challenging environments. 

3 Introducing spatio-temporal attention mechanism to improve the model performance. 
This work uses the spatio-temporal attention mechanism instead of the conventional 
attention mechanism to pay attention to important events in both audio and video 
signals in the time and spatial dimensions. Especially in the event of complicated 
player motions and heavy background noise, this approach can enable the model to 
effectively capture rhythmic changes during dynamic playing and strengthen the 
robustness of beat identification. 

These innovations make the model in this study more accurate, robust and adaptable in 
the piano beat recognition task, which provides technical support for the further 
development of the intelligent piano teaching system and provides new ideas and 
methods for research in related fields. 

2 Relevant technologies 

2.1 Beat recognition 

Beat detection is a crucial chore in music information processing since it seeks to identify 
rhythmic structures from audio sources for analysis and deployment of intelligent music 
systems (Camurri et al., 2000). Particularly in piano instruction, beat recognition is 
essential for students since it not only helps them to precisely understand the rhythm of 
playing but also enhances the fluidity and harmony of playing. Usually depending on 
feature extraction of audio signals, traditional beat detection techniques analyse the time 
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series information in the audio signals to detect rhythmic shifts. These techniques, 
meantime, can suffer from complicated rhythm alterations and noise interference. 

Traditional target detection methods can usually be classified into two main 
categories: candidate region-based methods and regression methods. The former by 
generating candidate regions (e.g., selective search) and classifying each region; the latter 
by directly predicting bounding boxes and categories from the whole image by means of 
regression. 

Accurate extraction of the rhythmic pulsations from the audio data and beat location 
determination constitute the fundamental responsibilities of beat recognition. Common 
signal analysis techniques are wavelet transform and short time Fourier transform 
(STFT), both of which are extensively applied in the task of beat recognition and have 
respective benefits in time-frequency analysis (Canal, 2010). By separating an audio 
signal into short segments in time and computing the spectrum of every segment, Short-
time Fourier Transform may clearly expose the periodicity and frequency components of 
the signal. Its mathematical statement is: 

2( ) ( ) ( ), j πfτX t f x τ w τ t e dτ
∞

∞
−

−
= −  (1) 

The time-frequency representation is denoted by X(t, f); the window function is w(τ – t); 
the frequency is f; the time is t. The frequency properties of the audio stream at various 
times can be recorded with this time-frequency representation, thereafter the periodic 
variations of the beat can be obtained. 

Particularly appropriate for signals with local abrupt changes or non-smoothness 
features, the wavelet transform more precisely captures the instantaneous changes in the 
signal than the STFT by multi-scale local analysis (Kim and Aggarwal, 2000). Wavelet 
transform’s fundamental formula is: 

,
1( ) ( )a b

t bW x x t ψ dt
∞

−∞

− 
 
 

= α α
 (2) 

where ψ(t) is the wavelet basis function; a and b are respectively the scale and 
displacement parameters; Wa,b(x) is the transform result under scale a and displacement b. 
Through scale parameter a, the wavelet transform adjusts to the several frequency 
components of the signal. Its time-frequency localisation is better than that of the STFT 
and is particularly appropriate for recording audio signals with regular rhythmic 
fluctuations. The immediate properties of the signal may be efficiently extracted by the 
wavelet transform, which also provide a necessary basis for later beat localisation. 

The rhythm detection technique grounded on the autocorrelation function (ACF) is 
another often used method in beat recognition (Kumar et al., 1997). By comparing the 
signal with its own time-shifted form, the autocorrelation function helps to determine the 
beat location by exposing the periodicity of a signal. It defines as: 

0
( ) ( ) ( )

T
R τ x t x t τ dt+=   (3) 

where τ is the time delay; R(τ) is the autocorrelation function; x(t) is the signal. Periodic 
signal peaks can be derived from the autocorrelation function, which relates to the 
temporal location of the beat. 
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But the temporal dependence between notes – especially when several notes overlap 
or are performed simultaneously – makes beat identification in piano performance a 
difficult task. Researchers have started to introduce a spatio-temporal attention 
mechanism to solve this issue so that the model may dynamically change the weight of 
attention depending on the relevance of information in many temporal and spatial 
dimensions by means of an attention mechanism into the model. This method can 
increase beat detection accuracy and reasonably simulate the spatio-temporal dependency 
between notes. 

2.2 Spatio-temporal two-branch attention mechanisms 

While using the attention mechanism to dynamically weight the attention to the key parts, 
which is especially appropriate for the beat recognition task with complicated  
spatio-temporal dependencies, the spatio-temporal dual-branch attention model combines 
deep feature extraction of temporal and spatial information to capture important features 
of the signal independently in the temporal and spatial dimensions by a dual-branch 
structure (Cai et al., 2024). Processing time series and spatial data in parallel allows the 
model to dynamically modify the weights between various time steps and spatial 
locations, thereby better modelling the spatio-temporal link between notes and rhythms. 

First, CNN or RNN handles the input signal Xtime in the time branch to extract the 
temporal properties. After feature extraction, the output temporal feature Tout is 
represented as assuming the convolutional or RNN layer in the temporal branch has L 
hidden layers: 

( ) ( )or  out time out timeT CNN X T RNN X= =  (4) 

where CNN(⋅) or RNN(⋅) indicates the convolutional operation or RNN operation, 
respectively, whereas Xtime is the input time-series signal; so, the output Tout is the features 
extracted via temporal branching. 

Temporal branching employs a temporal attention method to let the model 
concentrate on the important temporal information in the input signal (Wang et al., 2024). 
Calculating the similarity between the features of each time step and the query vector 
Qtime allows the temporal attention mechanism to dynamically change the focus to several 
time steps. More especially, the following equation computes the weight of temporal 
attention αtime(t): 

( )( )
( )( )

e ( )
( )

xp ,
exp ,( )

out time
time

out timet

score T t Q
t

score T t Q
′

=
′

α  (5) 

Generally by utilising dot product or another similarity computation technique, score(·,·) 
is a function that gauges the similarity between temporal characteristics and query 
vectors. By means of this method, the model can dynamically allocate attention to 
various time steps, hence improving attention to tempo variations and key note changes. 

Particularly when numerous notes overlap or notes interact with one another, spatial 
branching is helpful in extracting information in the spatial dimension and deals with 
spatial aspects in the audio stream. Furthermore, extracted from the input spatial signal 
Xspace by CNN are spatial branch features. Following spatial convolution layer processing, 
output spatial feature Sout is: 
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( )out spaceS CNN X=  (6) 

Spatial branching presents a spatial attention method, much like temporal branching 
(Campbell et al., 2007). Through computation of the similarity between the properties of 
every spatial location and the query vector Qspace, the spatial attention mechanism 
modulates the degree of attention of the model in the spatial dimension. One may 
determine the weight of spatial attention αspace(s) by means of the following equation: 

( )( )
( )( )

exp ,

e

(
(

p
)

x ( ),

)out space
space

out spaces

score S s Q
s

score S s Q
′

=
′

α  (7) 

where the attentional weight at spatial point s is αspace(s). Particularly in complicated 
sceneries with many notes overlapping, the model can efficiently find the spatial 
connections between notes by means of this spatial attention mechanism. 

The model must combine the temporal and spatial features after finishing their 
extraction (Zhong et al., 2019). Combining the attributes taken from the temporal and 
spatial branches helps the temporal and spatial information fusion layer to enable the later 
beat prediction. Tout and Sout of the temporal and spatial branches are merged by weighted 
summation in the fusion procedure. The weighted fusion equation is: 

final out outY T S= ⋅ + ⋅α β  (8) 

Usually optimised by training data, Yfinal is the final fusion feature; α and β are the weight 
coefficients of the temporal and spatial branches accordingly. Changing these two 
coefficients lets the model flexibly control the contribution of spatial and temporal 
elements to the final output under various application settings. 

The spatio-temporal two-branch attention model presents a self-attention method to 
improve the interactivity and representation of spatio-temporal information by allowing 
the model to capture more complicated spatio-temporal connections (Tu et al., 2024). 
Through computation of the correlation between spatio-temporal features, the  
self-attention process helps to represent interdependencies between features. The  
self-attention formula is specifically: 

Attention , , soft) max(
T

k

QKQ K V V
d

 
=   

 
 (9) 

With Q the query matrix, K the key matrix, V the value matrix, and dk the key’s 
dimension. Calculating the similarity between the input characteristics and assigns a 
weight to every feature, thereby obtaining the final output by weighted summation. When 
considering spatio-temporal characteristics, the model may therefore effectively represent 
the relationships between several times and locations, so enhancing the accuracy of 
rhythm detection. 

At last, the model produces a probability distribution via the softmax function, which 
denotes the beat location related to every time step. The subsequent equation computes 
this process: 

( )ˆ finalY softmax Y=  (10) 
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where Ŷ  is the projected last beat, softmax procedure turns model output into a 
probability distribution used to forecast the precise position of a beat. Based on this 
probability distribution, the model finds which time point most likely corresponds to a 
beat and hence precisely locates the beat. 

The pseudo-code for the spatio-temporal two-branch attention model is shown in 
Algorithm 1. 
Algorithm 1 Pseudo-code for the spatio-temporal two-branch attention model 

Input: Time-series input X_time, Spatial input X_space, Initial attention weights, Initial deep 
neural network weights, learning rate, iterations total number 
Output: Optimised time attention weights, optimised space attention weights, optimised neural 
network weights 
1 begin 
2  Initialise time and space attention weights (α, β) 
3  Initialise deep neural network weights for time and space branches 
4  Initialise sliding window size for input data 
5  Initialise experience buffer for reinforcement learning agent (optional) 
6  for iteration = 1 to total_iterations do 
7   Receive new time-series input vector X_time 
8   Receive new spatial input vector X_space 
9   Add new input to the sliding window 
10   Extract time features T_out from X_time using CNN 
11    Extract space features S_out from X_space using CNN 
12   Calculate time attention weights using softmax(T_out, Q_time) 
13   Calculate space attention weights using softmax(S_out, Q_space) 
14   Apply time and space attention to features:  
  T_out_weighted = T_out * attention_weights_time 
  S_out_weighted = S_out * attention_weights_space 
15   Fuse the weighted time and space features: 
  fused_features = α * T_out_weighted + β * S_out_weighted 
16   Pass fused features through self-attention mechanism 
17   Compute the final output prediction Y_pred from the fused features 
18   Calculate the total loss function between Y_pred and the true label 
19   Compute the gradient of the loss function with respect to the time and space 

attention weights 
20   Update the time and space attention weights using gradient descent 
21   Compute gradients for the deep neural network weights using backpropagation 
22   Update the deep neural network weights using gradient descent 
23   If the sliding window exceeds a predefined size then 
24    Remove the oldest sample from the sliding window 
25   end if 
26   (Optional) use reinforcement learning agent to optimise attention parameters based 

on reward signal 
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27   Store experience in buffer if using reinforcement learning 
28   If the experience buffer is full, randomly sample a small batch and compute strategy 

gradients 
29   Update RL policy parameters (optional) 
30 end for 
31 return optimised attention weights (α, β), optimised neural network weights 
32 end 

In summary, the spatio-temporal dual-branching attention model extracts features through 
independent temporal and spatial branches and adaptively adjusts the feature weights in 
the spatio-temporal dimension by combining with the attention mechanism to effectively 
capture the spatio-temporal dependencies in rhythmic signals. By fusing the  
spatio-temporal features and the self-attention mechanism, the model is able to accurately 
perform beat recognition with strong robustness in the presence of complex rhythmic 
patterns and note overlap. 

3 TempoNet: piano teaching aid beat recognition based on  
spatio-temporal bifurcated attention 

3.1 Model architecture 

Working together to maximise the accuracy and real-time performance of beat 
identification, TempoNet is composed of several modules each assigned a particular task. 
The general design comprises of a data preprocessing module, a temporal branching 
module, a spatial branching module, a spatio-temporal feature fusion module, a self-
attention mechanism module and a beat recognition module. Every module is described 
in great length here: 

1 Data preprocessing module 

 The main inputs in piano instruction are audio and visual. Whereas the visual feed 
offers the spatial layout and key motion of the piano keyboard, the audio signal has 
time information including the rhythm and pitch of the performance. Thus, the goal 
of the module on data preparation is to translate the audio and video signals into a 
feature representation fit for next use. 

 STFT initially uses time-frequency feature extraction on the audio signal Xaudio to 
record the timing changes in the signal. Following STFT transformation, the audio 
stream Xaudio has time-frequency elements: 

( )-time frequency audioX STFT X=  (11) 

 CNN uses spatial feature extraction of the video signal Xvideo to produce a spatial 
feature representation of the piano keyboard image: 

( )space videoX CNN X=  (12) 

 These two feature representations will be forwarded correspondingly into the spatial 
and temporal branching modules that follow. 



   

 

   

   
 

   

   

 

   

   108 R. Su    
 

    
 
 

   

   
 

   

   

 

   

       
 

2 Time branching module 

 Processing the temporal aspects of the audio signal is the fundamental work of the 
temporal branching module. First retrieved in this module via a sequence of 
convolutional layers (Conv1D or Conv2D), the time-frequency feature Xtime-frequency of 
the audio is then temporal feature Traw: 

( )-raw time frequencyT Conv X=  (13) 

 Then, using a temporal attention mechanism, the extracted temporal features are 
weighted to highlight events vital for beat identification. The temporal attention 
mechanism computes a weighting factor αt for the temporal features, therefore 
providing: 

( )t time rawSoftmax Q T= ⋅α  (14) 

 where Traw is the initial temporal feature obtained by convolution and Qtime is the 
query vector of temporal features, the weighted temporal feature Tweighted is finally 
produced: 

weighted raw tT T= ⋅α  (15) 

 The temporal branching module can so efficiently concentrate on the significant 
events in the beat signal. 

3 Spatial branching module 

 Processing the video information to extract spatial properties of the piano keyboard 
is the aim of the spatial branching module. By CNN, the video signal Xspace extracts 
the spatial feature Sraw, thereby reflecting the spatial structure and keyboard’s key 
state: 

( )raw spaceS CNN X=  (16) 

 The spatial attention mechanism’s job is to dynamically change each region’s weight 
according on the degree of piano keyboard focus devoted to other places. Calculating 
the similarity of feature maps with the formula generates the spatial attention weights 
βs: 

( )s space rawSoftmax Q S= ⋅β  (17) 

 At last, the weighted spatial feature Sweighted is obtained by means of attention to the 
spatial aspects: 

weighted raw sS S= ⋅ β  (18) 

 With this module, TempoNet is able to efficiently extract spatial information from 
piano playing, thus providing more accurate rhythm and movement recognition. 
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4 Temporal and spatial feature fusion module 

 From the audio and video signals respectively, the temporal and spatial aspects are 
extracted via the temporal and spatial branching modules respectively. Two weighted 
features Tweighted and Sweighted will be coupled in the spatio-temporal feature fusion 
module to generate the spatio-temporal feature representation Ffused: 

fused weighted weightedF T S= ⋅ + ⋅α β  (19) 

 where the fusion weight coefficients are α and β and their values can be dynamically 
changed in line with the training process. This step’s core goal is to apply weighted 
fusion of spatio-temporal characteristics and combining meaningful information 
from audio and video to increase beat detection accuracy. 

5 Self-attention mechanism module 

 Re-weighting the spatio-temporal features via self-attention aims to improve  
the capacity of the model to capture the linkages and global dependencies  
between several features. Assuming Ffused as the fused spatio-temporal feature, the 
self-attention mechanism computes the weighted feature Fattended by means of global 
feature correlation: 

( )-attended fusedF Self Attention F=  (20) 

 The self-attention method enables the model to recognise the worldwide knowledge 
about beats, therefore enhancing the accuracy and resilience of the model in 
challenging environments. 

6 Beat recognition module 

 At last, the features Fattended following spatio-temporal feature fusion and weighted by 
the self-attention mechanism feed the fully connected layer for final beat prediction 
in the beat detection module. Based on the weighted features using a certain formula, 
the fully connected layer determines the output result Ypred of beat recognition: 

( )pred attendedY FC F=  (21) 

 The result originally employed for real-time student playing beat feedback in the 
piano teaching system, Ypred is a vector representing the state of the beat at every 
moment. 

3.2 Assessment of indicators 

In the piano teaching-assisted beat identification challenge, model performance is 
absolutely important. We have chosen the following four often used assessment criteria 
to holistically assess the TempoNet model’s performance in many different facets. 

1 Accuracy 

 Indicating the ratio of accurately anticipated beats by the model to the total expected 
beats, accuracy is among the most often utilised measures for evaluation of 
categorisation tasks. The accuracy rate of the beat recognition problem shows the 
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general model efficacy in the beat identification challenge. The formula helps one to 
determine the accuracy rate: 

TP TNAccuracy
TP TN FP FN

+=
+ + +

 (22) 

 where TN is the true negative case, denoting the off-beat moment correctly predicted 
by the model; FP is the false positive case, denoting the off-beat moment incorrectly 
predicted by the model; and FN is the false negative case, denoting the beat moment 
incorrectly predicted by the model. Negative is indicating a beat instant the model 
misfits as non-beat. 

2 Precision 

 The measure of how many of the beat moments the model detects is accuracy rate. A 
greater accuracy rate denotes less false positives in the model’s beat prediction, 
thereby indicating better beat identification. The formula helps one to determine the 
accuracy rate: 

TPPrecision
TP FP

=
+

 (23) 

 High accuracy indicates that the model can efficiently avoid erroneous beat 
identification and has a great chance of accurately predicting when forecasting for 
beats. 

3 Recall 

 The model’s ability to identify how many actual beats it can detect from all real beats 
is gauged using recall. That is to say, the model can identify more beat events the 
more recall it possesses. Particularly in piano teaching situations, beat recognition 
activities demand that one find as many accurate beat times as feasible. The formula 
allows one to determine the recall rate: 

TPRecall
TP FN

=
+

 (24) 

 High recall indicates that the model can spot more genuine beat events and lower the 
missed call count. 

4 F1 score 

 Comprising the reconciled average of precision and recall, the F1 score may fully 
assess the completeness and accuracy of the model. The F1 score can balance the 
recall rate with the precision rate in the beat identification problem, therefore 
preventing the circumstance whereby one index is too high and the other is too low. 
The F1 score’s formula is: 

1 2 Precision RecallF score
Precision Recall

⋅= ⋅
+

 (25) 
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 Particularly in the context of imbalanced datasets, the F1 score offers a complete 
evaluation of the beat detection efficacy of the model and is a stronger predictor of 
the general performance than accuracy by itself. 

4 Experimental results and analyses 

4.1 Datasets 

In this work, we selected a multimodal dataset including both audio and video signals in 
order to assess the TempoNet model in the piano beat identification challenge. 

Mostly from the publicly accessible Piano-DB dataset, a multimodal dataset devoted 
to piano performance analysis with piano audio, video, and matching beat labels. The 
dataset consists of several recordings performed by several piano players; the recorded 
audio is of great quality; and the frame rate of the video is kept at 30 fps, which is 
appropriate for the tasks of piano movement detection and beat analysis. Additionally 
included to the study are some custom-recorded data including videos of piano playing 
with various tempos, therefore enhancing the variety of the dataset. 
Table 1 Piano-DB dataset statistical information 

Data type Description 
Audio files Each sample contains a piano performance audio signal, in WAV format, with a 

sampling rate of 44.1 kHz, and a duration ranging from 60 to 180 seconds. 
Video files Each audio file is paired with a corresponding piano performance video, with a 

resolution of 1,280 × 720, a frame rate of 30 fps, and in MP4 format. 
Beat labels Each audio and video sample has corresponding beat labels, with timestamps 

precise to the timing of each note played. The labels are manually annotated by 
experts to ensure accuracy. 

Regarding data preparation, STFT first transforms the audio signal to a time-frequency 
feature map whereby each audio clip is split into several 1-second-length time windows 
and the corresponding spectral features are extracted, subsequently normalised for use as 
input to the next network model. Each video frame was clipped to a fixed size  
(224 × 224) and normalised to capture changes in piano keyboard and hand movements. 
Pre-processing of video frames fed to the CNN helped to extract spatial characteristics. 
The beat labels are translated into a series of binary labels whereby non-beats are 0 and 
beats are 1. Model training and evaluation will base on these labels. 

Twenty percent of the samples were used as the test set and 80% of the samples as the 
training set, therefore separating the dataset. To guarantee that the model can be trained 
in a range of circumstances, the training set includes several players, repertory and tempo 
variances. The performance of the model on unprocessed data is assessed using the test 
set to guarantee objectivity and validity of the evaluation conclusions. 

4.2 Comparative experiments 

In this work, we intend to assess the TempoNet model’s performance in terms of 
accuracy, precision, recall, and F1 score by means of a comparative experiment between 
many other beat detection techniques and the model itself. We selected multiple 
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representative beat recognition models, all of which were trained on the same dataset and 
applied consistent training and test set divisions, therefore guaranteeing the fairness of 
the tests. Among the models for comparison studies are conventional audio feature-based 
techniques as well as deep learning models including CNN and RNN. 

The experimental results are shown in Figure 1. 

Figure 1 Results of comparative experiments (see online version for colours) 
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With bimodal inputs – audio and video – TempoNet beats all other comparison models 
quite dramatically. First of all TempoNet performs well on important measures including 
precision (90.8%), recall (94.2%), and F1 score (92.5%). It also obtains an accuracy of 
92.5%. By contrast, TempoNet’s recognition accuracy and performance are far higher 
than those of conventional audio feature-based beat recognition systems, including STFT 
+ SVM, which only reach 82.0% accuracy and 82.5% F1 sorce. Furthermore, although 
the performance is rather better under unimodal audio input, deep learning models 
including CNN (audio input) and RNN (audio input) obtain 85.3% and 88.1% 
respectively. Under unimodal audio input, the performance gains; however, it falls short 
of TempoNet’s bimodal identification capacity. 

Furthermore, although the Multi-modal (Audio + Video) model also uses dual-modal 
inputs of audio and video, its overall performance is rather less than TempoNet’s because 
it does not integrate the spatio-temporal dual-branching attentional mechanism used by 
TempoNet with an accuracy of 90.0%, and with precision and recall rates of 88.5% and 
91.6% respectively. 

The experimental results further demonstrate the advantages of TempoNet in the beat 
recognition task. Through the effective fusion of multimodal data and the introduction of 
the spatio-temporal dual-branching attention mechanism, TempoNet shows significant 
improvement in accuracy, robustness and real-time performance, and has a stronger beat 
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recognition capability compared to the traditional audio feature extraction and 
classification methods as well as the single-modal deep learning models. 

4.3 Ablation experiments 

In this work, we intended to confirm the contribution of every important technological 
module in the TempoNet model to beat recognition performance by designing ablation 
tests. We deleted the spatio-temporal two-branch attention mechanism, the video input, 
and the joint audio and video input from the TempoNet model, respectively, and 
evaluated the removed model in order to assess the influence of every module. These 
tests help one to better grasp how each module affects the general performance of the 
model. 

Figure 2 provides the ablation experiments’ specific findings: 

Figure 2 Results of ablation experiments (see online version for colours) 
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The first ablation experiment eliminates the spatio-temporal two-branch attention 
mechanism from the TempoNet model, therefore using either a conventional structure 
with a single or no attention mechanism for beat recognition. The experimental results 
reveal that the elimination of spatiotemporal two-branch attention reduces the 
performance of the model; the accuracy drops from 92.5% to 89.0%; the recall and  
F1 score also drop. This implies that TempoNet’s accuracy and resilience to capture the 
possible spatio-temporal correlations in the audio and visual inputs benefit much from the 
spatio-temporal two-branch attention mechanism. 

The second ablation experiment uses just auditory information for beat detection and 
eliminates the video input. This experiment is to confirm the increase of the video input 
on beat recognition. Eliminating the video input lowers TempoNet’s accuracy from 
92.5% to 85.3% and causes notable declines in precision and recall as well. This implies 
that, particularly in the case of complicated backgrounds or several audio sources, the 
video input offers useful visual information that allows the model to better grasp and 
recognise beats. 



   

 

   

   
 

   

   

 

   

   114 R. Su    
 

    
 
 

   

   
 

   

   

 

   

       
 

Using only one modality – audio – the third ablation experiment eliminates the joint 
audio and visual inputs and streamlines the way the model is fused. With an accuracy of 
88.2%, which is far lower than the 92.5% for the bimodal input, the testing results reveal 
that the performance of the single-modal audio input model is likewise deteriorated. This 
confirms even more the significant part combined audio and video inputs play in raising 
recognition accuracy. 

From the experimental results, it can be observed that removing the spatio-temporal 
two-branch attention mechanism has the greatest impact on the model, with a decrease of 
3.5% in the accuracy, and a significant decrease in the recall and F1 score, which 
indicates that this mechanism essentially improves the ability of the model to model 
complicated spatio-temporal relationships. Eliminating the video input reduces the 
accuracy by 7.2%, which emphasises the need of video information in beat recognition 
particularly in difficult situations. Eliminating the combined audio and visual inputs 
reduces the model’s accuracy as well, so multimodal fusion clearly increases the model’s 
recognition accuracy. 

Through these ablation experiments, we can conclude that both the spatio-temporal 
two-branch attention mechanism and the joint audio and video input play a crucial role in 
the beat recognition performance of TempoNet. The overall performance of the model 
not only benefits from the complementary audio and video information, but also better 
handles complex beat patterns with the help of the spatio-temporal attention mechanism. 

5 Conclusions 

Aiming to improve the accuracy and real-time performance of tempo recognition in piano 
teaching by combining the multimodal information of audio and video, and introducing 
the spatio-temporal two-branch attention mechanism, in this paper we propose a tempo 
recognition model, TempoNet, based on the spatio-temporal two-branch attention 
mechanism for piano teaching. TempoNet greatly improves the metrics of accuracy, 
precision, recall, and F1 score of beat detection relative to conventional unimodal audio 
systems and other deep learning approaches by means of comparing experiments and 
validation of ablation experiments. Furthermore indicated by the experimental results are 
the main elements influencing model performance improvement: spatio-temporal dual-
branching attention mechanism and audio-video fusion. 

TempoNet performs remarkably in beat identification challenges, although there are 
still certain limits. First of all, especially as the efficiency of the video input depends on 
the device and the shooting angle, the performance of the model may deteriorate when 
handling some more extreme environmental conditions (e.g., excessive background noise 
or low video quality.). Second, the dataset for this work is mostly from a small number of 
piano instruction situations; so, the generalisation capacity of the model to a greater 
spectrum of music scenarios still needs more validation. TempoNet’s computational cost 
is finally somewhat high, particularly in video processing, which could be a significant 
load for devices with low computational capacity, so restricting its adoption in useful 
applications. 

Future studies can enhance and broaden the above constraints in the following 
respects: 
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1 Noise and low quality input processing. More strong noise reduction methods such 
adaptive filtering or more sophisticated deep denoising networks would help the 
model be more robust in challenging settings. Furthermore, methods such generative 
adversarial network (GAN)-based video processing module optimisation helps to 
enhance the performance of low-quality videos. 

2 Model generalisation capability. Future studies must widen the dataset to include 
other kinds of musical instruments, music styles, and various performing techniques 
if we are to increase the applicability of the model. Furthermore, approaches like 
transfer learning help the model to improve generalisability and enable it to better fit 
the beat recognition job in various musical situations. 

3 Optimisation of computational resource consumption and efficiency. Future 
computing efficiency can help the model to be optimised so improving its practical 
application value. Techniques including model compression, quantisation, and 
knowledge distillation can help to lower the processing overhead thereby enabling 
real-time beat recognition on low-resource devices. Furthermore, lightweight deep 
learning models can be presented to lower the computational complexity and storage 
needs of the models, therefore improving their viability in useful applications. 

4 Personalisation and Interactivity Enhancement. TempoNet has already shown good 
performance in beat detection; however, future studies should include the 
personalisation needs in intelligent education to improve the system’s interactivity 
and intelligent feedback capacity. For instance, including elements like the learner’s 
emotional condition and learning development helps to deliver tailored comments on 
beat recognition. Simultaneously, the cognitive load and emotional changes of the 
learner can be better comprehended by merging bio-signal data including 
electroencephalogram (EEG), thereby offering more precise teaching aid. 
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