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Abstract: In autonomous driving and computer vision, 3D object detection 
plays a critical role but faces challenges related to the effective extraction and 
integration of multi-view features. The existing BEVFormer model, which uses 
CNNs to convert images into a bird’s-eye view (BEV), shows potential but 
struggles to capture fine-grained details and multi-scale information, especially 
in high-resolution, complex scenes. To address these limitations, we propose 
the MultiCAN-DEBEV model, which integrates the MSF-DySample, GCAF, 
and MSDE modules. These modules improve the handling of multi-scale 
features, enhance feature expressiveness, and strengthen detail representation. 
Experiments on the nuScenes dataset show significant performance 
improvements, and the modular design ensures broad adaptability to other 3D 
detection models. 
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1 Introduction 

3D object detection is a pivotal technology in the realms of autonomous driving and 
computer vision. It is instrumental in recognising and localising diverse objects, 
including vehicles and pedestrians, within intricate traffic environments, thereby 
enhancing the safety and efficiency of autonomous driving systems (Wu et al., 2021). 
Accurate detection in complex urban settings necessitates the extraction of robust 
features from multi-angle images and their integration to produce precise 3D positional 
and configurational information (Chen, 2024). 

Investigations into multi-view 3D object detection predominantly rely on deep 
learning technologies, particularly the utilisation of convolutional neural networks 
(CNNs) and attention mechanisms The BEVFormer model is a notable technique widely 
used for generating target detection from a bird’s-eye view (BEV), enabling accurate 
predictions (Li et al., 2022). This model integrates data from diverse sensors, including 
cameras positioned in multiple directions and LiDAR, effectively addressing projection 
issues from 2D to 3D while enhancing detection accuracy and efficiency (Li et al., 2023). 

Despite the advancements achieved by the BEVFormer in feature extraction and 
integration, challenges persist in complex scenarios, especially when addressing small or 
distant targets. Issues such as the loss of vertical structural details and information 
regarding occluded objects may still arise. Specifically, these models exhibit limitations 
in integrating multi-scale feature information, capturing contextual information, and 
managing detailed features. Optimising these issues, especially in leveraging detailed 
information from high-resolution images, is crucial for detecting small and distant targets 
in autonomous driving scenarios within complex environments (Chen et al., 2022). 

To tackle these challenges, this study introduces an enhanced BEVFormer model, 
designated as multi-scale convolutional attention network with detail enhancement for 
BEV (MultiCAN-DEBEV). This model introduces a multi-scale feature fusion dynamic 
upsampling (MSF-DySample) module that adaptively adjusts the upsampling strategy 
based on varying input features, thereby enhancing the model’s capability to manage 
inputs of different scales and improving its handling of multi-scale features. The global 
convolutional attention fusion (GCAF) module enhances the capture of global 
information, thereby improving the model’s ability to infer the potential locations and 
shapes of occluded objects through enhanced contextual information acquisition. The 
multi-scale detail enhancement (MSDE) module effectively extracts and enhances 
detailed features in images by applying deformable and dilated convolutions. The 
integration of these modules not only strengthens the model’s capacity to address the 
challenges of lost vertical structural details and occluded object information in complex 
scenarios but also enhances the performance of downstream tasks such as 3D object 
detection. Furthermore, due to its modular nature, these components can be easily applied 
to other similar tasks. Experimental results on the nuScenes dataset indicate that the 
improved MultiCAN-DEBEV model outperforms the baseline model. 

In conclusion, the proposed MultiCAN-DEBEV model not only demonstrates 
theoretical innovation but also exhibits improved performance in practical applications, 
thereby offering substantial technical support and a theoretical foundation for the future 
advancement of autonomous driving technology and associated computer vision tasks. 
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2 Related work 

3D object detection holds a pivotal role in domains such as autonomous driving and 
robotic vision. Relevant studies can be primarily classified into three categories: 
traditional methods based on LiDAR, multi-view imaging methods based on cameras, 
and advanced technologies that integrate CNNs with attention mechanisms (Yin et al., 
2021; Liu et al., 2021). 

• Challenges in multi-view image fusion: Multi-view image fusion and dynamic 
upsampling play a crucial role in autonomous driving applications. The BEVFormer 
model enhances the performance of three-dimensional object detection by converting 
multi-view images into a BEV. Nonetheless, existing methodologies often face 
substantial computational costs and restricted feature expression capabilities when 
tackling multi-view image fusion and dynamic upsampling. In recent years, dynamic 
upsampling technologies have attracted significant attention. For example, CARAFE 
facilitates efficient upsampling by learning to generate dynamic convolutional 
kernels, whereas FADE and SAPA integrate attention mechanisms to further 
improve the performance of dynamic upsampling (Wang et al., 2019; Zhang et al., 
2020; Liu et al., 2020). Although these methods have advanced in achieving efficient 
upsampling, they still incur substantial computational costs. To tackle this issue, we 
propose the MSF-DySample module, which integrates multi-scale feature fusion and 
dynamic upsampling techniques, utilising a dual-branch architecture to concurrently 
capture high-frequency and low-frequency information, thereby enhancing feature 
expression capabilities. 

• Enhancing feature fusion with CNNs and attention: The integration of CNNs and 
attention mechanisms within the BEVFormer model has garnered significant 
attention (Zhong and Hu, 2022). While CNNs have demonstrated considerable 
success in various tasks, including image classification, object detection, and image 
segmentation, they are inherently limited to local receptive fields, which hampers 
their ability to effectively capture global contextual information and long-range 
dependencies. To mitigate this challenge, researchers have increasingly adopted 
attention mechanisms that dynamically adjust feature weights to better capture long-
range dependencies. The BEVFormer model incorporates the Transformer 
architecture, utilising self-attention mechanisms to enhance the feature fusion 
capabilities of multi-view images (Li et al., 2022). However, despite these 
advancements, BEVFormer still exhibits limitations in capturing detailed features 
and multi-scale information. To address these shortcomings, we propose the GCAF 
module, which integrates convolutional and attention mechanisms to improve feature 
expression, thereby facilitating the concurrent capture of both local and global 
features. 

• Limitations of traditional LiDAR methods: Traditional 3D object detection methods 
predominantly rely on LiDAR data, such as PointNet++ and VoxelNet (Qi et al., 
2017; Zhou and Tuzel, 2018). These methods facilitate 3D object detection through 
the processing of point cloud data. However, the acquisition cost of LiDAR data is 
substantial, and its performance is suboptimal under adverse weather conditions. 
With technological advancements, camera-based 3D object detection methods have 
increasingly garnered attention. These methods utilise multi-view images to generate 
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BEVs, exemplified by the BEVFormer model, which transforms multi-view images 
into BEVs and integrates CNNs for feature extraction and fusion, achieving notable 
results. Although BEVFormer excels in 3D object detection tasks, it still exhibits 
limitations in capturing detailed features and multi-scale information. Therefore, this 
paper proposes an enhanced method by introducing a MSDE to address these 
challenges. 

• Limitations of traditional LiDAR methods: 3D object detection methods 
predominantly rely on LiDAR data, exemplified by techniques such as PointNet++ 
and VoxelNet (Qi et al., 2017; Zhou and Tuzel, 2018). These methods facilitate 3D 
object detection through the processing of point cloud data. However, the acquisition 
costs associated with LiDAR data are substantial, and its performance can be 
suboptimal under adverse weather conditions. With advancements in technology, 
camera-based 3D object detection methods have garnered increasing attention. These 
methods utilise multi-view images to generate BEVs, as demonstrated by the 
BEVFormer model, which transforms multi-view images into BEVs and integrates 
CNNs for feature extraction and fusion, achieving notable results. Although the 
BEVFormer model excels in 3D object detection tasks, it still exhibits limitations in 
capturing detailed features and multi-scale information. To address these challenges, 
this paper proposes an enhanced approach by introducing a MSDE. 

In summary, while existing 3D object detection methods have achieved significant 
advancements across various dimensions, they still demonstrate limitations in capturing 
detailed features and processing multi-scale information. As the demands for detection 
accuracy and real-time performance in practical applications, such as autonomous driving 
and intelligent monitoring, continue to escalate, there is a pressing need for further 
optimisation and enhancement of these methods. Consequently, the proposed  
MultiCAN-DEBEV model aims to enhance the performance of 3D object detection by 
integrating several advanced modules designed to meet the requirements of practical 
applications. 

3 MultiCAN-DEBEV 

3.1 Model design overview 

This paper presents the MultiCAN-DEBEV model, enhancing the accuracy of BEV 
representation and improving the performance of 3D object detection by incorporating a 
MSF-DySample module, a GCAF module, and a MSDE based on the BEVFormer 
model. 

First, the input multimodal data undergoes upsampling through the MSF-DySample 
module to retain more detailed information. Next, the enhanced feature maps are further 
refined by the GCAF module and aggregated through the MSDE module. This process 
ultimately generates feature maps for 3D object detection. 
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Figure 1 Framework diagram of the MultiCAN-DEBEV model (see online version for colours) 

 

Notes: This model enhances the BEVFormer by incorporating the MSF-DySample 
module, the GCAF module, and the multi-scale detail enhancement (MSDE) 
module, aiming to improve the accuracy of BEV representation and the 
performance of 3D object detection. 

3.2 MSF-DySample module 

The MSF-DySample module introduces a convolution operator termed AttnConv, which 
employs an attention-based approach and capitalises on the benefits of shared weights 
and context-aware weights for local perception. Specifically, the MSF-DySample module 
is characterised by a dual-branch architecture, wherein one branch utilises AttnConv to 
capture high-frequency information, while the other branch employs vanilla attention and 
downsampling techniques to capture low-frequency information (Chen et al., 2021; 
Vaswani et al., 2017). This innovative dual-branch design enables the MSF-DySample 
module to concurrently capture both high-frequency and low-frequency information 
within a unified framework, thereby facilitating the effective fusion of multi-scale 
features. Consequently, this enhancement significantly improves the feature 
representation capability of the model and bolsters its performance in complex scenarios. 
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Figure 2 Overall framework diagram of the MSF-DySample module (see online version  
for colours) 

 

Notes: This module (MSF-DySample) aims to enhance feature representation by 
combining dynamic upsampling techniques with multi-scale feature fusion. 

3.2.1 Implementation of dynamic sampling 
To dynamically adjust the position of each pixel based on the content of the input feature 
map, an initial convolution layer is used to generate offsets. 

[ ](O) : O Conv(X)=  (1) 

where 2B 2GS H W(O R ).× × ×∈  
Subsequently, to provide each pixel with an initial offset, ensuring that each pixel has 

a reasonable starting point during the upsampling process, the initial position matrix is 
computed. 

[ ][ ][ ]

w
S 1 S 3 S 2 S 1 S 3 S 1(I) : Ih , , , S I , , , S
2 2 2 2 2 2

I Ih Iw I I G I I reshape(1, 1, 1, 1)

 − + − + −   − + − + −    = =            
= × = × = ⋅ −

 
 (2) 

where Ih and Iw are the vertical (height) and horizontal (width) offsets, respectively. 
Simultaneously, to ensure that each pixel’s position is mapped within the range [–1, 

1], normalised coordinates are calculated. The pixels are also rearranged for interpolation 
using the GridSample function: 

[ ][ ]
[ ]
[ ]
[ ]

h w

h w

(N) : N [0.5, 1.5, , H 0.5] N [0.5, 1.5, , W 0.5]
N N N
N N unsqueeze(1) unsqueeze(0) type(X dtype) to(X device)
N 2 (N O ) T 1

= − = −

= ×
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

′= ⋅ + −

 

 (3) 

[ ]
[ ]
N N view(B, 2, 1, H, W)
N N permute(0, 2, 3, 4, 1) contiguou() flatten(0, 1)

′ = ⋅ −
′ ′= ⋅ ⋅ ⋅

 (4) 
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where Nh = [0.5, 1.5, …, H – 0.5] and Nw = [0.5, 1.5, …, W – 0.5]represent the position 
of each pixel in the feature map. T = [W, H] used to normalise coordinates into the range 
[–1, 1]. 

Finally, the GridSample function is used to perform bilinear interpolation on the input 
feature map based on the calculated coordinates to retain more detail features. 

(
)

[ ]

Y GridSample X reshape(B G, 1, H, W), N ,

mode bilinear , align _ corners False, padding _ mode "border"

Y Y view(B, 1, SH, SW)

′ = ⋅ × −
′ ′ = = = 

= ⋅ −

 (5) 

3.2.2 Implementation of dual-branch high and low frequency feature fusion 
For the high-frequency branch, the model is designed with small convolutional kernels 
and attention mechanisms to capture detail-rich high-frequency features, enhancing the 
model’s spatial resolution understanding. The process is as follows: 

Initially, feature mappings are generated:Fqkv: 

m d
n

i

num _ heads dimFqkv Conv3 3 (X)with m , d
num _ headsi g

× = × = = 
  

 (6) 

where (X) is the input feature map, m is the number of heads within each attention group, 
d is the dimension of each head, num_heads is the total number of heads, dim is the 
channel number of the input features, (Conv3×3) represents convolutional operations using 
3 × 3 kernels, and gi indicates the number of heads in the i group. 

Subsequently, the feature’s expressiveness is enhanced using the AttnMap activation 
function. 

( )( )qkvQ, K, V Split AttnMap F =   (7) 

where Split function decomposes Q, K, V into query: Q, key: K and value: V, then, 
scaled attention is calculated: 

( )Attn tanh scalor (Q K) = × ⋅   (8) 

where scalor is the scaling factor, typically set 1
d

 to stabilise gradients. 

Finally, attention and value are merged: 

[ ]highZ Attn V=   (9) 

where  represents element-wise multiplication, Zhigh is the high frequency feature after 
fusion. 

For the low-frequency information branch, the model focuses on overall context 
information through average pooling and global query operations, complementing  
macro-structural features overlooked by the high-frequency branch. The process is as 
follows: 

Initially, a global query is generated: 
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g d
global 1 1Q Conv (X)×

× =   (10) 

where g is the number of heads in the low-frequency branch, which is used to capture 
global contextual information of the image. 

Then, low-frequency keys and values are generated through global average pooling: 

( )2g d
1 1KVlow AvgPoolws Conv (X)×
×

 =   (11) 

where AvgPoolws represents average pooling operations with a (ws × ws) window size, 
which is used for downsampling to extract low-frequency features. 

Subsequently, low-frequency features are obtained through global context queries and 
local aggregation. 

( )( )
[ ]

TAttnlow softmax scalor Qglobal KVlow

Zlow Attnlow KVlow

 = × ⋅ 
= ⋅

 (12) 

3.3 GCAF module 

This paper introduces the GCAF module, which aims to significantly enhance the 
capability of feature representation in capturing contextual information by integrating 
convolutional and attention mechanisms. Specifically, the GCAF module is structured 
into two branches: a local branch and a global branch. The local branch employs 
convolution and channel shuffling techniques for local feature extraction, thereby 
ensuring the precise capture of detailed information. In contrast, the global branch models 
long-range dependencies through attention mechanisms (Cao et al., 2019; Zhang et al., 
2018), effectively capturing global contextual information. Furthermore, the global 
branch leverages global information from the feature maps across spatial dimensions 
(height and width) to generate attention maps. These attention maps are subsequently 
utilised to weight the input feature maps, significantly enhancing the contextual 
information within the feature representation (Jiang et al., 2021). In this manner, the 
GCAF module is capable of concurrently capturing both local and global features, 
thereby substantially improving the overall feature representation capability and 
bolstering the model’s performance in complex scenarios. 

3.3.1 Local feature extraction branch 
First, for a given input feature map, local feature maps are generated through a 
convolution layer: 

Local(x) Conv(x)=  (13) 

where Conv represents the standard convolution operation, x is the input feature map. 
Subsequently, channel shuffling is used. By rearranging multiple groups of channels 

of the feature maps, the information can be better integrated across different channels. 
Specifically, the channel shuffle operation can be expressed as: 

( )Shuffle(x) ChannelShuffle Local(x)=  (14) 
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In particular, channel shuffling is achieved by dividing the channels of the feature map 
into multiple groups, and then rearranging the channels within each group. The 
mathematical expression is: 

( )Shuffle(x) Reshape x, (B, G, C G , H, W)=  (15) 

( )Shuffle(x) Transpose x, (0, 2, 1, 3, 4)=  (16) 

( )Shuffle(x) Reshape x, (B, C, H, W)=  (17) 

where C is the number of channels of the input feature map, G is the number of groups, B 
is the batch size, H and W are the feature map respectively; C/G is the number of 
channels per group. 

Figure 3 Logic diagram of the local feature extraction branch (see online version for colours) 

 

Notes: The local feature extraction branch employs convolution operations and channel 
shuffling techniques to efficiently extract local features. 

3.3.2 Global feature extraction branch 
First, compute the dot product of Q and K, and obtain the attention weights through the 
softmax function: 

T

k

QKAttention(Q, K) softmax
d

 =  
 

 (18) 

where dk is the dimension of the keys, QKT representing the dot product of queries and 
keys. Specifically, the dot product operation can be represented as: 

kdT T
i ii 1

QK Q K
=

=  (19) 

Subsequently, apply the attention weights to the values, obtaining the weighted feature 
map that effectively captures global contextual information and long-range dependencies: 

Global(x) Attention(Q, K)V=  (20) 

Next, the feature maps X ∈ RB×C×H×W are divided into G groups, with each group 
containing C/G channels. The grouped feature maps are represented as: 

CB G H W
GX

∈ × × ×
 (21) 
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Subsequently, global average pooling and global max pooling operations are performed 
on the grouped feature maps in both the height and width dimensions: 

CB G H 1
Gh,avg

CB G H 1
Gh,max

CB G 1 W
Gw,avg

CB G 1 W
Gw,max

X AvgPool(X) R

X MaxPool(X) R

X AvgPool(X) R

X MaxPool(X) R

× × × ×

× × × ×

× × × ×

× × × ×

= ∈

= ∈

= ∈

= ∈

 (22) 

Figure 4 Logic diagram of the global feature extraction branch, (a) the global feature extraction 
branch uses attention mechanisms to model long-range dependencies, thereby capturing 
global features (b) it generates attention maps using global information from the feature 
maps in the spatial dimensions (height and width) and weights the input feature maps 
with these attention maps to enhance feature representation capability  
(see online version for colours) 

 
(a) 

 
(b) 

After the operations are completed, a shared convolution layer is applied for feature 
processing on each grouped feature map. This shared convolution layer consists of two  
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1 × 1 convolution layers, a batch normalisation layer, and a ReLu activation function, 
which are used to reduce and restore the channel dimensions: 

( ) ( )
( ) ( )

h,avg h,avg h,max h,max

w,avg w,avg w,max w,max

Y Conv X , Y Conv X

Y Conv X , Y Conv X

= =

= =
 (23) 

Then, by summing the outputs of the convolution layers and applying a Sigmoid 
activation function, attention weights for the height and width dimensions are generated: 

( )

( )

CB G H 1
Gh h,avg h,max

CB G 1 W
Gw w,avg w,max

A σ Y Y R

A σ Y Y R

× × × ×

× × × ×

= + ∈

= + ∈
 (24) 

where σ is a Sigmoid activation function. 
Finally, the input feature maps are weighted according to the attention weights to 

obtain the final global feature map: 
B C H W

h wO X A A R × × ×= × × ∈  (25) 

3.4 MSDE module 

The MSDE module proposed in this paper significantly enhances the detailed features in 
images by integrating various convolutional operations (Zhang et al., 2018). Specifically, 
the MSDE module combines the weights and biases of different convolutional operations 
to construct a comprehensive convolutional kernel, thereby markedly improving the 
feature representation capability without incurring additional computational costs (Yu 
and Koltun, 2016). This module employs multi-scale atrous convolutions to extract 
features from diverse receptive fields, ensuring a thorough capture of detailed 
information, and further enhances feature expressiveness by incorporating channel and 
spatial attention mechanisms. The multi-scale atrous convolutions consist of five 
branches, each utilising distinct dilation rates for convolution and global average pooling 
to extract rich global features (Hu et al., 2018; Woo et al., 2018). Ultimately, the outputs 
of all branches are concatenated and fused through channel and spatial attention 
mechanisms, ensuring that detailed features are adequately extracted and enhanced, 
thereby improving the model’s performance in complex scenarios. 

3.4.1 Dynamic convolution branch 
First, dynamic convolution kernel weights are generated through a convolution layer: 

Weights(x) Conv(x)=  (26) 

where Conv represents the standard convolution operation; x is the input feature map. 
Then, the feature map is convoluted using the dynamic convolution kernel weights: 

( )DEConv(x) DynamicConv x, Weights(x)=  (27) 

where DynamicConv represents the dynamic convolution operation. 
The implementation of dynamic convolution can be expressed as: 
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( ) k k
ij iji 1 j 1

DynamicConv x, Weights(x) Weights (x) x
= =

= ⋅   (28) 

where k is the size of the convolution kernel; Weightsij are the dynamically generated 
convolution kernel weights; xij is a local region of the input feature map. 

Figure 5 Dynamic convolution branch logic diagram (see online version for colours) 

 

Notes: By merging multiple convolution operations, a composite convolution kernel is 
formed. 

3.4.2 Multi-scale dilated convolution 
First, for a given input feature map x, multi-scale feature maps are generated using 
several different dilation rates in dilated convolution layers: 

ii dAtrousConv (x) Conv (x)=  (29) 

where idConv  represents the dilated convolution operation with dilation rate di. 
Then, the dilated convolution feature maps with different dilation rates are 

concatenated to obtain:AtrousConv(x): 

( )1 2 n

AtrousConv(x)
concat AtrousConv (x), AtrousConv (x), , AtrousConv (x)= 

 (30) 

where concat represents the concatenation operation, assuming each dilated convolution 
feature map has dimensions B × C × H × W, and the dimension of the concatenated 
feature map is B × (n × C) × H × W, where n is the number of dilated convolutions. 
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Figure 6 Multi-scale dilated convolution logic diagram (see online version for colours) 

 

Notes: Enhanced feature maps are obtained by concatenating different dilated 
convolutions. 

4 Experiments 

This section provides a comprehensive overview of the experimental setup employed to 
evaluate the MultiCAN-DEBEV model, encompassing the dataset, experimental 
configuration, 3D object detection results, ablation studies, and visualisation outcomes. 
The primary objective of these experiments is to assess the model’s effectiveness and its 
adaptability in complex environments. 

4.1 Dataset 

This study utilises the nuScenes dataset to evaluate the performance of the enhanced 
BEVFormer model in 3D object detection tasks. The nuScenes dataset is a large-scale 
dataset for autonomous driving, designed to advance the development of autonomous 
driving technologies. It integrates data from multiple sensors, including multi-view 
images, LiDAR point clouds, and GPS/IMU information, thereby providing rich 
multimodal data suitable for various computer vision applications (Caesar et al., 2020). 

The nuScenes dataset consists of 850 scenes spanning urban, suburban, and highway 
environments, with significant diversity in terms of geographical locations, weather 
conditions, and lighting. This variety makes the dataset highly representative of real 
world conditions. Each scene is meticulously annotated with multiple object types such 
as vehicles, pedestrians, and cyclists, with high annotation accuracy, providing a solid 
foundation for the training and evaluation of 3D object detection models. To ensure 
fairness and reproducibility in the experiments, the dataset is divided into a training set 
(700 scenes) and a validation set (150 scenes). The training set is primarily used for 
model training and parameter tuning, while the validation set is used to assess the 
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model’s performance on unseen data. This division method effectively prevents 
overfitting and ensures the model’s applicability in the real world. 

4.2 Experimental setup 

Experiments were conducted on a system with an NVIDIA RTX A5000 GPU to optimise 
training and inference efficiency. The model is implemented using the PyTorch 
framework, with AdamW as the optimiser, and R101 as the Backbone. The batch size is 
set to 24 to balance training speed and memory usage effectively. To evaluate model 
performance, the BEVFormer-s model is used as the baseline, with normalised detection 
score (NDS) and mean average precision (mAP) as evaluation metrics. NDS considers 
the accuracy, recall, and classification performance of detection, while mAP focuses on 
the precision of the detection results. These settings provide a solid foundation for 
subsequent experiments (Liu et al., 2022; Everingham et al., 2010). 

4.3 3D object detection results 

First, compare the MultiCAN-DEBEV model with the baseline model BEVFormer-S and 
other mainstream 3D object detection models (such as BEVDet-pure, SRCN3D, and 
PiCasso_OD_v1.0) on the nuScenes dataset. 
Table 1 3D detection results of different models on nuScenes 

Model NDS ↑ mAP ↑ 
HENet_Sp 0.707 0.645 
HaomoAI perception model 0.624 0.624 
BEVDet-pure 0.463 0.398 
SRCN3D 0.463 0.396 
PiCasso_OD_v1.0 0.369 0.307 
BEVFormer-s 0.462 0.409 
MultiCAN-DEBEV 0.469 0.418 

Notes: Compare the 3D detection performance of models contemporaneous with 
BEVFormer-S and those current at this time. 

The enhanced MultiCAN-DEBEV model demonstrates superior performance compared 
to the BEVFormer-S model and several contemporaneous models on the nuScenes 
dataset, as evidenced by improvements in both the NDS and mAP metrics. Specifically, 
the NDS increased by 0.7% and the mAP by 0.9% relative to the BEVFormer-S model, 
thereby validating the effectiveness of the MultiCAN-DEBEV model. Notably, the 
MultiCAN-DEBEV model excels in complex scenarios, particularly in pedestrian and 
vehicle detection tasks, where it effectively captures detailed features, thereby enhancing 
detection accuracy. However, given that the BEVFormer-S was introduced in 2022 and 
that the MultiCAN-DEBEV is an optimisation of the BEVFormer framework, a 
significant performance gap remains when compared to various new models introduced 
after 2023. Nevertheless, the MSF-DySample, GCAF, and MSDE modules incorporated 
into the MultiCAN-DEBEV model are modular in nature, endowing them with strong 
universality. Furthermore, with the anticipated introduction of BEVFormer V2 and  



   

 

   

   
 

   

   

 

   

   112 H. Yan et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

CLIP-BevFormer, which are based on the BEVFormer model, it is expected that these 
modules will be applicable to these new models in future experiments, thereby 
facilitating improvements and optimisations that enhance overall performance. 

4.4 Ablation study 

To analyse the contribution of each module to the model’s performance, ablation 
experiments were conducted by systematically removing the MSF-DySample, GCAF, 
and MSDE modules, and recording the changes in model performance. 
Table 2 Detection results of the MultiCAN-DEBEV model on the nuScenes dataset for each 

module 

Model NDS ↑ mAP ↑ 
BEVFormer-s 0.462 0.409 
+MSF-DySample ↑ 0.463 0.413 
+GCAF ↑ 0.462 0.410 
+MSDE ↓ 0.461 0.400 
+MSF-DySample + GCAF ↑ 0.464 0.411 
+MSF-DySample + MSDE ↑ 0.485 0.464 
+GCAF +MSDE ↑ 0.464 0.412 
MultiCAN-DEBEV ↑ 0.469 0.418 

Note: Each module was tested in combination on the nuScenes dataset. 

In comparison to the baseline model BEVFormer-S, the incorporation of the MSF-
DySample and GCAF modules results in a modest increase in both NDS and mAP 
metrics. Conversely, the exclusive insertion of the MSDE module leads to a slight decline 
in NDS and mAP. Nevertheless, given the MSDE module’s enhanced capability for 
extracting detailed features in complex scenarios, subsequent integration experiments 
were conducted. From the analysis of individual module insertions, it can be concluded 
that the inclusion of the MSF-DySample and GCAF modules facilitates dynamic 
upsampling and the capture of long-range dependencies, thereby improving model 
performance and optimisation. While the introduction of the MSDE module results in a 
minor reduction in performance, it remains justifiable due to its enhancement of the 
model’s ability to recognise detailed features through dilated fusion. 

Subsequent experiments were performed with combinations of the MSF-DySample  
+ GCAF, MSF-DySample + MSDE, and GCAF + MSDE modules. The results indicate 
that these pairwise combinations yield improvements in both NDS and mAP metrics. 
Notably, the combination of the MSF-DySample and MSDE modules produced the most 
significant performance enhancement, with an increase of 2.3% in NDS and 5.5% in 
mAP compared to the baseline model BEVFormer-S. The experimental findings suggest 
that capturing high and low-frequency features from the original feature maps, followed 
by dilated fusion to extract detailed features, can substantially enhance model 
performance and target recognition. Additionally, other pairwise combinations also 
demonstrated slight improvements, further validating the efficacy of simultaneous 
module utilisation. 

Ultimately, the simultaneous incorporation of the MSF-DySample, GCAF, and 
MSDE modules into the baseline model resulted in a modest performance improvement 
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and an enhancement in three-dimensional recognition capabilities. The experimental 
results illustrate that by enhancing the extraction of high and low-frequency features with 
the MSF-DySample module, capturing both global and local features with the GCAF 
module, and employing the MSDE for multi-scale feature fusion to refine detailed 
features, the original model’s feature maps can be significantly enhanced, leading to an 
overall improvement in model performance and an increased rate of three-dimensional 
object recognition. 

4.5 Visualisation results 

To further validate the efficacy of the MultiCAN-DEBEV model in three-dimensional 
object detection, a selection of detection results was subjected to visualisation analysis. 

Figure 7 Visualisation of the MultiCAN-DEBEV model in complex scenarios  
(see online version for colours) 

   

Notes: The model performs object detection and labelling for pedestrians and vehicles 
under challenging conditions. 

The images presented illustrate the detection results of the MultiCAN-DEBEV model 
within complex scenes, encompassing bounding boxes for both pedestrians and vehicles. 
It is apparent that the MultiCAN-DEBEV model excels in accurately identifying and 
localising various categories of targets, even in instances of occlusion. Furthermore, the 
model demonstrates a high degree of accuracy for distant targets. This effectively 
underscores the contributions of the MSF-DySample and GCAF modules in enhancing 
multi-scale features and long-range dependencies for three-dimensional detection within 
this framework. 

Figure 8 Visualisation of the MultiCAN-DEBEV model in a parking lot scenario with multiple 
vehicles and long-distance detection (see online version for colours) 

  

Notes: In this complex situation, where multiple vehicles and distant cars are present, the 
model performs object detection and labelling. 

The images illustrate that, through detail enhancement, the model effectively recognises 
vehicle information at extended distances. Furthermore, by employing multi-scale 
convolution, it accurately identifies and precisely localises various types of vehicles. This 
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robust performance underscores the significant role of the MSDE module in enhancing 
detailed features and utilising multi-scale dilated convolution for three-dimensional 
detection within this framework. 

5 Discussion and conclusions 

This study presents the MultiCAN-DEBEV model, an advanced iteration of the 
BEVFormer-S algorithm designed to enhance BEV representation and 3D object 
detection. The model consists of three main modules: MSF-DySample, GCAF, and 
MSDE. MSF-DySample employs a dual-branch framework for dynamic upsampling, 
effectively capturing both high-frequency and low-frequency information. GCAF 
integrates local and global features to enhance contextual acquisition and feature 
robustness, while MSDE refines feature representation through the application of 
deformable and dilated convolutions. Collectively, these three modules address 
challenges such as the loss of vertical structural details and information regarding 
occluded objects that may arise in complex scenarios. 

Experimental results indicate that MultiCAN-DEBEV outperforms BEVFormer-S on 
the nuScenes dataset, excelling in detail acquisition in complex scenarios and 
significantly reducing the rates of missed detections and false positives. Its modular 
design facilitates seamless integration with other models. This research advances the 
theory of 3D object detection and its applications in autonomous driving and intelligent 
monitoring; however, the integration of these modules introduces operations such as 
dynamic upsampling, global convolution, and multi-scale feature fusion, which increases 
computational complexity. This leads to prolonged training times and a reduction in real-
time performance. Therefore, future research will focus on refining the model modules 
and employing optimisation techniques, such as pruning, quantisation, and knowledge 
distillation, to further improve the model’s real-time performance while maintaining 
detection accuracy. Additionally, since the model has only been validated on the 
nuScenes dataset, there may be a risk of overfitting. Therefore, in subsequent research, 
data augmentation techniques will be employed, and validation will be conducted on 
other datasets, such as KITTI, to ensure the model’s generalisation capability. Finally, 
errors in feature extraction or fusion could introduce artefacts in the reconstructed 3D 
images. To mitigate this, future research will apply post-processing techniques to the 
reconstructed 3D images, aiming to reduce the impact of such artefacts as much as 
possible. 
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