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Abstract: Current research on charging station planning overlooks the 
evolution of power distribution networks and oversimplifies charging demand 
without considering the traffic characteristics of electric vehicles (EVs), leading 
to voltage deviations due to high charging loads. This paper proposes a bi-level 
optimisation model to simulate EV charging demand based on road networks. 
Charging demand is forecasted through road network simulation, and 
simplified charging needs are clustered with road weights. The model then 
optimises the power distribution network topology, as well as the location and 
capacity of charging stations. The upper level optimises the power network 
structure, while the lower level optimises the layout and capacity of charging 
stations. Case studies show that the clustering algorithm based on road weights 
effectively simplifies the data while retaining the spatiotemporal characteristics 
of charging demand. The proposed bi-level planning model significantly 
mitigates voltage deviations caused by high charging loads. 

Keywords: charging station planning; distribution network planning; 
clustering; electric vehicles; EVs; bilevel optimisation; distribution network; 
article swarm optimisation. 
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1 Introduction 

Electric vehicles (EVs) serve as both a mode of transportation and a mobile load, 
influenced by the dual factors of charging station layout and traffic flow information. The 
uncertainty and spatiotemporal distribution characteristics of their charging demands 
pose new challenges for the planning of distribution networks and the establishment of 
charging stations. 

The primary steps in charging station planning include the construction of road 
network models, the forecasting of EV charging demands, the establishment of planning 
models, and their solutions. 

During the planning and design phase of charging infrastructure, the core issue lies in 
predicting the charging demand for EVs. Typically, this prediction process involves a 
comprehensive analysis of key factors such as the regional road traffic network, travel 
patterns of EVs, and user charging behaviours. Accurately and reasonably predicting the 
charging load of EVs to obtain its spatiotemporal distribution characteristics is crucial for 
supporting the decision-making process of building and expanding charging 
infrastructure. It is also a prerequisite step for the site selection planning of charging 
facilities. 

In the initial phase of research, researchers primarily conducted preliminary 
predictive analysis of the charging load of EVs based on static data. For example, they 
used historical operational data from charging stations for related studies. With 
continuous technological advancements and gradually expanding research perspectives, 
the methods for predicting the charging load of EVs have begun to focus more on 
dynamically describing the driving and charging behaviours of EVs. Currently, the 
methods for predicting the charging load of EVs can be mainly divided into the following 
two categories: 
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1.1 EV charging load forecasting method based on historical operation data of 
charging stations 

The demand for EV charging is influenced by a variety of factors, including EV travel 
behaviour, user types, and traffic conditions. Some scholars have conducted research on 
predicting charging demand based on a large amount of historical operational data from 
charging stations. 

Tian and Zhang (2019) constructed an integrated vehicle-pole platform to collect 
operational data of EVs and charging data of charging piles, thereby generating a heat 
map of EV usage. This study aimed to minimise the payback period as the objective 
function and built a charging station location and capacity model, which was solved using 
a differential evolution algorithm. Liu et al. (2016) conducted in-depth data mining on the 
historical data of EV charging stations, analysed the fluctuation characteristics of the 
sample data, and constructed a charging prediction model based on the combination of 
freshness function and cross-entropy, aiming to predict the short-term charging load of 
EVs. Leou et al. (2015) used the actual charging station data statistically collected  
on-site, described the charging frequency and initial charge level of EVs using Poisson 
distribution, uniform distribution, and roulette selection methods, and established a 
charging station load forecasting model based on this. Zhang et al (2022) integrate real 
ride-hailing trip data through data mining to uncover user travel habits. Zhu et al. (2019) 
utilised big data and machine learning techniques to evaluate the real-time data of EV 
charging stations and proposed a data stream-based streaming logistic regression model, 
which charging station operators can use for optimisation planning. 

1.2 Charging demand forecasting method for simulating EV travel 
characteristics 

Zhang et al. (2014) analysed the parking patterns of various types of vehicles and used 
Monte Carlo simulation techniques to simulate the travel, parking, and charging 
behaviours of vehicles, thereby predicting the temporal and spatial distribution of vehicle 
charging loads. Tang and Wang (2016) adopted a graph theory approach, combined with 
a Markov decision process, to simulate the transfer behaviour of EVs within the road 
network, in order to predict their charging demand. Xu et al. (2016) based on the theory 
of travel chains, effectively simulated the travel patterns of EV users, divided the study 
area into five categories based on land use functions and geographical attributes – 
residential areas, office areas, tourist areas, commercial areas, and educational areas – 
and comprehensively considered the traffic flow of each area to complete the prediction 
of EV charging loads. Song et al. (2020) simulated the driving characteristics of EVs 
based on the topological structure of the transportation network and the travel data 
matrix, and on this basis, completed the prediction of the temporal and spatial distribution 
of charging demand. Li et al. (2019) constructed travel chain models of different 
complexities based on vehicle travel datasets and used the shortest path algorithm to 
determine travel routes, in order to predict the distribution of EV charging loads. Zang  
et al. (2021) proposed a ‘time-traffic’ road impedance model that accounts for road 
impedance to describe changes in vehicle positions. Tian et al. (2010) analysed the travel 
patterns of traditional vehicles and simulated the initial charging time, daily driving 
mileage, and battery capacity of EVs through probabilistic statistical methods, thereby 
calculating the total power of charging loads. Luo et al. (2024) employs Monte Carlo 
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sampling to simulate EV charging demands and uses time-of-use clustering and Gaussian 
mixture models to simplify data samples. Xing et al. (2020a) proposed an EV routing 
planning and charging navigation strategy based on real-time traffic information, 
simulating EV driving behaviour through the traffic OD method. 

Previous literature has conducted extensive research on the prediction of EV charging 
demand. However, the predicted demand is overly complex and not particularly 
beneficial for computational efficiency. Moreover, clustering simplification for charging 
demand can not only streamline the calculation process but also enhance the accuracy of 
planning results to improve overall planning benefits. Therefore, as mentioned above, 
some research teams, such as Luo et al. (2024), have used time-based clustering methods 
based on road distances in their planning. However, these studies frequently use 
traditional clustering algorithms that are solely based on the concept of distance, which 
may not be the most accurate representation of the actual travel costs for EVs as a mode 
of transportation. It is worth noting that the travel costs for EVs are not only related to the 
distance travelled but are also significantly affected by actual road conditions, such as 
traffic congestion and road types. These factors are often overlooked in these simplified 
models. 

In planning the location and capacity of charging stations, it is necessary to consider 
not only the load-bearing capacity of distribution lines and the interests of charging 
station investors but also the charging costs for EV users. A rational layout of charging 
stations can reduce the energy consumption and queuing time for users during their 
charging trips. Reference Wang et al. (2023), Gao et al. (2022), Pennington et al. (2024), 
Gutierrez and Ladisch (2024), Rouso et al. (2024), and Ullah et al. (2024) involves EVs 
in the voltage regulation of distribution networks. Jiang et al (2019) forecast the 
spatiotemporal distribution of EV charging demands to minimise investment costs for 
charging stations and charging costs for users. Yan et al. (2021) use neural network 
algorithms to predict the ownership of EVs and employs an improved PSO algorithm to 
optimise the location and capacity of charging stations. Tian et al. (2021) evaluate the 
acceptance capacity of distribution networks for charging station access schemes using an 
entropy-weighted analytic hierarchy process (AHP) method. 

In summary, existing research has studied aspects such as the prediction of charging 
demands (Yang et al., 2022; Lu et al., 2022; Wang et al., 2022; Kautish et al., 2024; 
Zhang et al., 2022; Zang et al., 2021) and user charging costs, but there are still the 
following shortcomings. For the prediction of charging demand, the results are often too 
complex to calculate, and the methods used to simplify charging demand do not fully 
reflect the traffic characteristics of EVs; for the planning of charging stations, the 
coupling relationship between charging demand and distribution networks has not been 
fully reflected, and there is little consideration of the interaction between charging 
stations and distribution networks during the planning process. Merely guiding users to 
charge orderly to mitigate the node voltage deviation caused by the access of a large 
number of EV charging loads to the distribution network is not a long-term solution. 
Instead, it leads to the distribution network topology planning being unable to adapt to 
the randomness of EV user growth and charging demand, and the planning of charging 
stations is restricted by the fixed distribution network, making it difficult to meet the 
needs of EV users. This paper proposes a charging station planning method that combines 
spatiotemporal charging demand with the development of distribution networks to solve 
the aforementioned problems. The research content is as follows: 
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1 The generation of the spatiotemporal distribution of EV charging demand begins 
with the basic classification of EV users. Monte Carlo simulation is used to sample 
and generate vehicle data and related driving information for each user. A road 
network model is established that simulates road conditions using road weights, and 
the travel patterns of different types of EVs are analysed based on trip chain theory. 
A single EV model is constructed, and the Dijkstra algorithm is used to confirm the 
movement trajectories of EV users within the road network model. Combining the 
charging habits of different types of users and confirming their charging times and 
locations based on the current battery charge level (SOC) of the vehicle to generate a 
rough spatiotemporal distribution of charging demand. Then, road weights are 
introduced into a clustering algorithm based on BFS to accurately depict the 
spatiotemporal distribution of charging demand. 

2 A two-layer planning model for the construction of distribution network lines and the 
location and capacity determination of EV charging stations is established. Taking 
the IEEE33-node distribution network system as an example, for the grid and EV 
charging station location and capacity determination, this paper establishes a  
grid-station two-layer planning model. The upper-layer grid planning aims to 
maximise the total revenue of the distribution company, which includes the 
construction, operation and maintenance costs, and revenue from electricity sales. 
The constraint condition is the voltage deviation of the distribution network nodes, 
and a fast generation method for the expansion scheme of the distribution network 
topology structure is optimised using a grid structure based on the breaking circle 
method. The lower-layer charging station planning aims to maximise the 
comprehensive revenue of the charging station (comprehensive revenue: 
construction cost, operation and maintenance cost, user cost, network loss cost, and 
revenue from electricity sales). The constraint conditions are the locations for 
investment and construction selected in the clustering process, the minimum spacing 
between charging stations, and the voltage deviation of the distribution network 
nodes. The actual investment location and construction capacity of the charging 
stations are optimised based on the spatiotemporal distribution of charging demand 
at the clustering centres. During the iterative solution process of the model, the lower 
layer plans the location and capacity of the charging station based on the distribution 
network line structure given by the upper layer, according to the spatiotemporal 
distribution of charging demand. The upper layer then superimposes the charging 
load given by the lower layer onto the conventional load of the distribution network 
to confirm the optimal grid construction scheme under the current load conditions. 
After iteration, the model will provide the optimal grid construction scheme and the 
capacity and investment address of the charging stations. Based on this planning 
result, the Newton-Raphson method is used to solve the distribution network node 
deviation. Compared with the results of disorderly investment in charging stations, it 
is shown that the charging station access scheme after planning has less impact on 
the distribution network than random access, which is more conducive to the safe 
and stable operation of the distribution network. 
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2 Overall technical framework 

This paper proposes a planning approach for EV charging stations based on the 
development of distribution networks and coupled charging demands. By employing 
Monte Carlo sampling, road network simulation, the incorporation of road weights, and 
utilising breadth-first search (BFS) for community detection, we cluster and generate 
charging demands that align with the mobility characteristics of EVs. Subsequently, a bi-
level optimisation model is constructed, with the upper level optimising the topology of 
the distribution network and the lower level optimising the siting and capacity 
configuration of charging stations. This ensures that the planning scheme can take into 
account both the stability of the distribution network and the charging demands of EV 
users, as depicted in Figure 1 of the technical framework. 

Figure 1 Overall technical framework for charging station planning (see online version  
for colours) 
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As depicted in the figure, for charging demands, this paper employs Monte Carlo 
sampling to obtain a substantial amount of basic information on EV users; for the road 
network model, the concept of road weights is introduced to reflect traffic conditions on 
road segments; the Dijkstra algorithm is utilised to determine the travel paths of each EV 
user within the road network based on start and end nodes, combining the sampled  
EV-related data to calculate the energy consumption of users' travel, and obtaining the 
spatiotemporal distribution of charging demands for all system EV users based on the 
charging logic of different types of vehicle users. 

Based on a clustering algorithm that integrates BFS and cluster evaluation  
(Davies-Bouldin Index (DBI)), road weights are used to cluster the charging load at 
different road nodes during various time periods to their corresponding cluster centre 
nodes, ensuring that the influence range of each cluster centre does not overlap or 
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intersect by utilising BFS for community detection. The clustered charging demands can 
be referenced for lower-level charging station planning, with the assumption that EV 
users depart from the cluster centres to charge at the nearest charging stations, and that 
cluster centres can also serve as potential locations for charging stations. 

Regarding the framework and EV charging station siting and capacity determination, 
this paper establishes a bi-level planning model for network and station. The upper-level 
network planning aims to maximise the total revenue of the distribution network operator 
by optimising the expansion plan of the distribution network topology. The lower-level 
charging station planning aims to maximise the comprehensive revenue of the charging 
stations, optimising the actual location and construction capacity of charging stations 
based on the spatiotemporal distribution of charging demands at cluster centres. 

3 Road network model and EV charging demand forecast 

EVs, as a mode of transportation, are influenced by the road network structure and real-
time traffic conditions in their navigation and travel. Therefore, when predicting EV 
charging demands, it is necessary to establish a road network model to simulate the 
driving behaviour of EVs and accurately forecast users' charging demands based on 
energy consumption models and charging habits. 

3.1 Road network-power grid coupling model 

The road network refers to the physical structure of roads and transportation systems 
within a city or region, primarily used for vehicle passage and navigation. The travel 
paths of EV users are influenced by the structure of the road network. Regarding the 
distribution network, EVs are a relatively special type of load; they possess both the 
characteristics of a mode of transportation and a mobile load. Their charging behaviour 
and demands can impact the load distribution and nodal voltage of the distribution 
network. Therefore, when studying the charging load of EVs, the nodes of the 
distribution network are mapped directly into the road network as road network nodes, 
establishing a road network-distribution network coupling model to map the 
spatiotemporal distribution of EV charging load in the road network into the nodes of the 
distribution network. 

3.1.1 Road network model 
The road network model employs graph-theoretic analysis for modelling (Cui, 2013), and 
the topological mathematical model of the road network is described as equation (1): 
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In the equation, G represents the overall road network model; v denotes the set of all 
nodes in G; E signifies the set of all road segments; W is the collection of road segment 
weights; K indicates the set of time periods divided. 

In further discussion, the segment weight W is defined as a quantitative indicator of 
road travel costs, and its quantitative research can be based on parameters such as 
segment length, travel speed, travel time, and travel expenses. In view of the  
time-varying dynamic characteristics of the urban internal road network and the 
complexity of multiple intersections, this paper adopts a time-flow model for modelling 
and analysis. This study focuses on the distribution of EV charging loads within urban 
roads. In the urban road network, many intersection nodes are usually controlled by 
traffic lights, and vehicle travel is not only affected by the impedance of the road segment 
but also encounters time delays at the intersection nodes. Therefore, the road resistance in 
the urban road can be expressed as: 

K
ij i ijW = Cv + Rv  (2) 

In the equation: Cvi represents the node impedance model; Rvi represents the road segment 
impedance model. 

According to the classification criteria for urban traffic conditions, the saturation S is 
adopted as an evaluation indicator: unobstructed (0 < S < 0.6), slow-moving (0.6 < S ≤ 
0.8), congested (0.8 < S ≤ 1.0), and severely congested (1.0 < S ≤ 2.0). Given the 
differences in the capacity of road intersections and road sections, models for road 
section impedance and node impedance under different saturation levels can be 
constructed accordingly. 

The road segment impedance model 

( )

( )

1 ( )

1 (2- )

1 : , (0 1.0)0
2 : , (1.0 2.0)0

S

S

R v t Sij
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R v t Sij
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α β

α β
 (3) 

In the equation: saturation QS =
C

 represents the degree of congestion. The degree of 

saturation depends on the actual vehicle flow and the maximum allowable vehicle 
flow on the road. The higher the travel speed of vehicles on the road section, the 
lower the saturation value, and vice versa. Q is the traffic flow on the road segment, 
C is the capacity of the road segment; t0 is the travel time at zero flow; α, β are 
impedance influence factors. 

Node impedance model 
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In the equation: c represent ‘signal cycle’ or ‘signal light cycle’; γ represent green 
signal ratio; q represent vehicle arrival rate on the road segment. 
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Combining equation (3) with equation (4) yields the complete road segment weight 
model: 

1 1

1 2

2 1

2 2
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 (5) 

3.2 Single electric vehicle charging demand forecasting method 

EVs can be categorised into three major classes based on their usage: private cars, taxis, 
and public vehicles. Building upon this classification, to analyse the full-day travel 
distribution characteristics of EVs, an origin-destination (OD) matrix is employed to 
delineate their starting and destination points (Yan and Luo, 2022). Monte Carlo 
sampling is utilised to assign travel origin and destination locations, as well as departure 
and return times, for each EV. The Dijkstra algorithm is then applied for route guidance, 
and ultimately, by integrating the energy consumption models and corresponding 
charging habits of various types of EV users, the travel mileage of each EV is quantified 
into charging demands at corresponding nodes. 

3.2.1 EV Battery parameter model 
Based on the classification statistics of EVs, the battery capacity of different types of EVs 
is distributed according to the gamma distribution (Zhang et al., 2024) as shown in 
equation (6). 

( )

( )
11 ( )

Γ

t
p

t t

t

C i
t

bat p
t t

C C i e
−

−= 
α β

αβ α
 (6) 

In the equation: αt and βt are the parameters of the gamma distribution, Γ(αt) is the 
normalisation constant of the gamma distribution, and the ( )

p

tC i ,  parameters for the 
battery capacity of the three types of EVs are specified. Based on common EV data (Luo 
et al., 2024), the specific parameters are detailed in Appendix Table A1. 

3.2.2 Electric vehicle battery parameter model 
According to the ‘urban road engineering design specifications,’ a model for the EV 
energy consumption per unit distance on urban roads is established, as follows: 

( )( )
1.5 0.21 0.001* *

k
ij k k

m ij ij
car

w t
E w w

V
= + −  (7) 

In the equation: Vcar represents the average travel speed of the road segment, which is 
obtained through Monte Carlo sampling. 
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3.2.3 EV charging demand forecasting process 
At each distribution network node a vehicle reaches, the remaining state of charge (SOC) 
of the vehicle is calculated: 

1 0
1

0.9
m

SOC SOC
bat

ET T
C

= −  (8) 

2 1
2

0.9
m

SOC SOC
bat

ET T
C

= −  (9) 

In the equation: 
0SOCT  represents the initial SOC, 

1SOCT  and 
2SOCT  represent the current 

and the estimated SOC upon arrival at the next node; Cbat denotes the battery capacity; 
Em1 signifies the cumulative energy consumption generated by all the road segments 
travelled by the vehicle, Em2 indicates the estimated energy consumption to the next 
distribution network node private cars 

2
0,SOCT <  then slow charging is required, while 

for public and taxi vehicles 
2

0.5SOCT <  fast charging is needed. 

Fast charging: 

( )0
bat 

fast SOC
fast 

CT = 0.5 - T
P

 (10) 

Slow charging: 

( )1
bat 

fast SOC
slow 

CT = 0.5 - T
P

 (11) 

According to the QC/T 841-2010 standard ‘EV conductive charging interface,’ the 
destination slow charging power Pslow is set at 12kW, and the fast charging power 
Pfast at the charging station is set at 60kW. 

Based on the user's charging time, the start and end time periods for each user's 
charging within the distribution network are obtained. The calculation formula is as 
follows: 

Private car charging start tstart and end times tend: 

  

 

0.9
D

floor 
car 

start floor

end floor slow

Lt
V

t t
t t T






=

=
= +




 (12) 

In the equation: In the equation, represents the average speed of the vehicle Vcar 
represents the cumulative mileage of vehicles at the current node, and LD represents 
the cumulative time of vehicle travel at the current node. 

For public and taxi vehicles, the start and end times of charging are as follows: 
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 (13) 

Based on the user's charging time, the charging load for each user within the 
distribution network is obtained, Pi,k that is, the charging demand of the user at node 
k at time moment i. The calculation formula is as follows: 

Private cars: 

, *i k slo slw owP T P=   (14) 

Public and taxi vehicles: 

, *i k fast fastP T P=    (15) 

In the equation, k represents the moment determined by the corresponding start tstart 
and end times tend of charging. 

The charging demand of each EV during the same period is accumulated to the 
corresponding road network node to obtain the spatiotemporal distribution of  
24-hour EV charging demand. 

3.3 Clustering algorithm with introduced road weights 

Given the large number of EVs and the complexity of the transportation network 
structure, directly applying each EV's demand data to subsequent charging station 
planning problems would significantly increase the complexity of model solving. This 
paper proposes the introduction of road network weights during the clustering process, 
employing an improved clustering algorithm based on BFS and central node updates. The 
main steps of the algorithm are as follows: 

3.3.1 Cluster main steps 
The process is illustrated in Figure 2: 

The specific details are as follows: 

1 Initialisation: select qq traffic network nodes as initial cluster centres. Utilise the 
BFS method, starting from the chosen initial centres to expand, ensuring that each 
initial cluster centre effectively covers the surrounding nodes. 

2 Node allocation: calculate the shortest path distance from each node where charging 
demand data is located to the qq cluster centres, and assign it to the category of the 
nearest cluster centre. 

3 Iterative optimisation: in each iteration, readjust the allocation of nodes based on the 
road weights to all cluster centres. For each cluster centre, calculate the total road 
weight of the covered nodes, and select the node with the minimum weight as the 
new cluster centre. 
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Figure 2 Clustering flowchart 
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3.3.2 Davies-Bouldin index 
The DBI is a metric for assessing the quality of clustering. It measures the effectiveness 
of clustering by calculating the compactness within each cluster and the separation 
between different clusters. 
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The smaller the DBI value, the better the clustering effect (Liu et al., 2023). 
This index is defined as: 

,1

1 max
q

i j
DBI

i ji
j i

c c
I

q D=
≠

+ 
=   

 
  (16) 

In the equation: q represents the number of cluster centres, ci and cj are the average 
distances from node i and node j to their respective cluster centres, and Di,j is the road 
network weight from cluster centre i to cluster centre j. 

4 Network-station bi-level planning model 

To address the issue of distribution network topology planning not being adaptable to the 
randomness of charging demands and to meet the EV charging demands generated by 
road network simulation and community clustering, this paper establishes a bi-level 
planning model. The upper level is the distribution network topology planning layer, 
which optimises the construction plan of the network structure with the goal of 
maximising the benefits for the distribution company; the lower level aims to maximise 
the benefits of charging stations by optimising the construction location and capacity. 

4.1 Upper model 

4.1.1 Objective function 
When constructing the network structure, it is necessary to consider the comprehensive 
benefits of the distribution network constructor. Therefore, the total benefits for the 
distribution company are proposed, which are composed of operational and maintenance 
costs, expansion costs, and the transaction benefits of users: 

   max inv main transF C C C= − − +  (17) 

In the equation, Cinv represents the equivalent annual cost of distribution network 
expansion, which includes the construction of new lines and interconnection lines; Cmain 
denotes the operational and maintenance costs of the distribution network; Ctrans sales 
signifies the revenue from electricity sales of the distribution network. 

Distribution network expansion 

,

( 1)
( 1) 1

m

inv ij ij linem
i j

dC x L C
d d

+=
+ −    (18) 

In the equation, dd represents the discount rate for the construction of the network 
structure; mm is the service life of the lines; i and j are nodes within the distribution 
network; xij is a binary variable indicating whether the line between nodes i and j is 
constructed or not; Lij is the length of line ij; and Cline are the construction cost 
parameters per unit length of line ijij, as shown in Appendix Table A2 

operational and maintenance costs: 
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  main invC μC=  (19) 

In the equation, μ represents the proportion of operation and maintenance costs. 

Distribution network electricity sales revenue 
24

, ,
1 1

nodeN
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t i

C C P
= =

=
 

   (20) 

In the equation, Nnode represents the number of nodes; Csold,t is the electricity selling price 
at time t; Pi,t is the charging power at node i at time t. 

Figure 3 Loop-breaking method 
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4.1.2 Constraints 
Node voltage constraints 

min maxb b bU U U≤ ≤  (21) 

In the equation, Ub represents the per-unit value of the node voltage; Ubmin is the lower 
limit of the per-unit node voltage; Ubmax is the upper limit of the per-unit node voltage. 

4.1.3 Fast generation method for network topology structure 
During the iterative process of generating the network structure, the loop-breaking 
method (Lu et al., 2022) is used to improve the solution speed, and the steps are in  
Figure 3. 

4.2 Lower model 

4.2.1 Objective function 
When planning the location and capacity of EV charging stations, the total benefits of the 
charging stations, which are composed of construction costs, operational and 
maintenance costs, user costs, network loss costs, and electricity sales revenue, are 
considered. The planning of EV charging stations is constructed to maximise the total 
benefits: 

max I EV L BF C C C C= − − − +  (22) 

In the equation, CI represents the average annual investment cost of the kth charging 
station; CEV and CB are the annual user cost and the annual electricity sales revenue of the 
charging station, respectively; CL is the annual network loss cost of the charging station. 
For related parameters, see Appendix Table A3. 

Average annual investment cost: 
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Nc is the total number of charging stations to be constructed ϕ is the set of nodes 
where charging station candidates are located; CJ,i,k, CM,i,K and Co,i,k are the 
construction cost, operational cost, and other costs at node ii for the kth charging 
station, respectively; r0 is the discount rate; n0 is the operational life of the charging 
station; Cch is the unit price of a charging pile; Nch,iK, Ai,k, Cfi,K and βk are the number 
of charging piles, the area occupied by a single charging pile, the rental cost per unit 
area, and the proportion of operational and maintenance costs to construction costs at 
node ii for the kth charging station, respectively. See Appendix Table A3 for related 
parameters. 

Annual user cost: 
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365EV jC C=  (25) 

In the equation: Cj daily user cost. 

The daily user cost, which is composed of energy consumption costs during travel, 
travel time costs, and queuing time costs: 
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In the equation: Cev,t,k, Ni,c represent the user cost and the number of charging 
demand clusters heading to the kth charging station during time period t, respectively; 
tn,k,d, tn,k,w represent the average travel time and the average waiting time for charging 
from the nth cluster centre to the kth charging station, with the waiting time being 
determined by subsequent formulas; ct and cn,ke represent the unit time cost for 
charging users and the average energy consumption during travel from the nth cluster 
centre to the kth charging station, respectively 

Charging station annual network loss cost: 
24

,
1

365L c L i
i

C P P
=

=   (28) 

In the equation: PL,i represents the network loss during period i, and Pc c is the cost 
coefficient 
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In the equation: Im1 denotes the absolute value of the branch current between nodes m 
and l; represents the branch resistance between nodes m and l. 

Charging station annual electricity sales revenue: 
24
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Pb,t represents the unit electricity selling price at the charging station during period t, 
Pi,t is the charging power at node ii during period t. 

If the arrival process of vehicles at various charging stations follows a Poisson 
distribution, according to queue theory (Xing et al., 2020b; Ratnaweera et al., 2004), 
the average waiting time Tw in the system is: 
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Nch,k represents the number of charging machines in the charging station; ε is the average 
charging time for a single charging pile, μ is the average number of users arriving per 
unit of time, which is the reciprocal of the EV charging duration; ρ is the utilisation rate 
of the charging machines (ρ < 1). 

4.2.2 Constraints 
Distance constraints 

minsu u≥  (34) 

In the equation, the distance between any two charging stations is greater than or 
equal to the minimum distance limit  

Charging pile quantity constraints 

, max
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N P E
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≥  (35) 

Pch represents the charging power of the charging pile; Emax is the maximum value of 
the charging demand from all clustering centres. This constraint sets the minimum 
number of charging piles to be constructed. 

Charging station construction node constraints: 

1

aN

c c c alt 
c

a N a A
=

∈≥  (36) 

ac is a binary variable that takes the value of 1 if a charging station is constructed at 
node cc, and 0 otherwise; Aalt and Na represent the set of potential charging station 
locations and the number of potential locations, respectively. 

Node voltage constraints: 

min maxb b bU U U≤ ≤  (37) 

Ub represents the per-unit value of the node voltage; Ubmin is the lower limit of the  
per-unit node voltage; Ubmax is the upper limit of the per-unit node voltage (Zhao and 
Yang, 2024). 
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5 Planning model solution algorithm 

Particle swarm optimisation (PSO) is a global optimisation algorithm inspired by the 
foraging behaviour of bird flocks. It gradually approaches the optimal solution of a 
problem through collaboration and information sharing among individual particles. PSO 
has the advantages of simplicity and high computational efficiency, and thus has been 
widely applied in fields such as nonlinear optimisation and distributed system design. 
However, traditional PSO algorithms have revealed some issues in practical applications, 
such as being prone to getting stuck in local optima in complex, multimodal search 
spaces, leading to insufficient global search performance. This is especially evident when 
the particle swarm tends to converge towards the end of optimisation, where search 
efficiency significantly decreases. To address this, this paper employs a probabilistic 
mutation method based on single-dimensional search quantities to improve PSO (MPSO). 
By introducing a dynamic mutation mechanism, probabilistic positional adjustments are 
made to certain dimensions of particles during the optimisation process, thereby 
enhancing the algorithm's global search capability and convergence speed. Unlike 
traditional PSO, MPSO improves the ability of particles to escape local optima through 
moderate disturbances near local optimum points, while also making the search process 
more flexible and diverse. 

5.1 Principles of algorithms 

The improvement focus of MPSO lies in the dynamic variation operation of particles. 
The core idea is based on the statistics of historical search volume on a single dimension, 
to probabilistically vary dimensions with higher search concentration, allowing particles 
to explore areas that have not been fully accessed. First, each particle's search space is 
divided into several intervals by dimension, with each interval representing an 
independent search subspace. As particles iteratively update, the algorithm statistically 
tracks the historical access volume of each interval in real-time, serving as a basis for 
judging the degree of search in that area. When a specific interval of a dimension is 
frequently accessed, it indicates that the search in that interval is becoming overly 
concentrated, which could lead the algorithm to get stuck in local optima. To avoid this 
issue, the algorithm triggers a probabilistic variation mechanism in that interval, resetting 
the particle's position to a less searched interval for further exploration. The probability 
of variation is inversely proportional to the historical access volume of the target interval; 
the lower the access volume, the higher the probability of the particle jumping into it. 
This design ensures that particles can dynamically and evenly cover the entire search 
space. 

During this process, the overall position update of particles still follows the inertia 
weight and acceleration term formulas of traditional PSO. However, the introduction of 
the variation mechanism interferes with the position on individual dimensions of 
particles. The position of the varied particles is no longer limited by local optima but 
probabilistically jumps into new areas based on the historical access distribution. Such 
operations not only increase the randomness of the search but also effectively break the 
premature convergence problem caused by particle clustering. Through this dynamic 
variation mechanism, MPSO achieves full exploration of the search space while 
maintaining a high ability to discover global optimal solutions. 
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5.2 Advantages of the algorithm 

The improved MPSO algorithm has shown significant improvements in performance and 
applicability compared to traditional PSO. Firstly, MPSO significantly enhances the 
diversity of particles by introducing a probabilistic mutation mechanism. In traditional 
PSO, the position update of particles usually relies on the current global best solution and 
individual historical best solutions. This mechanism can quickly approach the optimal 
area in the early stages of search, but in the later stages of optimisation, it may fall into 
local optima due to the excessive concentration of particles around the global best point. 
MPSO, on the other hand, dynamically adjusts the positions of particles, increasing 
attention to less explored areas, thus avoiding premature convergence of the particle 
swarm. 

Figure 4 Improved particle swarm optimisation 
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Secondly, MPSO performs outstandingly in terms of optimisation efficiency. By 
triggering mutations in high-frequency search intervals, MPSO reduces the number of 
ineffective searches, allowing the algorithm to find the global optimal solution in a 
shorter time. Moreover, since the goal of probabilistic mutation is to improve the global 
exploration ability of the particle swarm, MPSO is particularly suitable for  
high-dimensional nonlinear optimisation problems and has shown strong adaptability in 
the optimisation of complex multimodal functions. In addition, while improving global 
performance, MPSO retains the simplicity and ease of implementation of traditional PSO 
algorithms. The introduction of the dynamic mutation mechanism does not significantly 
increase computational complexity, and its framework remains simple and flexible, 
making it easy to apply in various practical scenarios. Therefore, this paper employs an 
improved PSO algorithm (Lu et al., 2009) to solve the EV charging station planning 
model established. The process is illustrated in Figure 4. 

6 Case study analysis 

Based on the EV path planning experiment, this paper predicts the spatiotemporal 
distribution of EV charging demand and its impact on the distribution network through a 
specific example. The IEEE-33 distribution network model is selected in this paper and 
coupled with the road network model to form an interactive model. MATLAB code is 
used to program the road network topology and road weights, and the planning scheme is 
solved to verify the effectiveness of the bi-level planning model proposed in this paper. 
The road network topology diagram, specific data of the distribution network, EV 
parameters, and charging station parameters are shown in Appendix. 

6.1 Electric vehicle charging demand forecasting results 

6.1.1 Electric vehicle charging demand forecasting results 
A total of 1,000 EVs are planned to be put into operation, and the charging demand at 
each node for each period of 24 hours is shown in Figure 5. 

Figure 5 Time-space distribution of charging demand within 24 hours (see online version  
for colours) 
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As shown in the diagram, it is clear that the charging demand for EVs exhibits a ‘double 
peak’ pattern over the temporal dimension. Specifically, this pattern manifests as two 
distinct peak periods, one in the morning and the other from evening to night. In terms of 
spatial distribution, the charging demand also shows regular characteristics. To be 
precise, between 8:00 AM and 10:00 AM, the charging demand is mainly concentrated 
near the nodes 9, 15, and 22; whereas during the afternoon period from 17:00 to 20:00, 
the charging demand shifts to the nodes 2, 5, 15, and 32, and the demand is generally 
higher. The occurrence of this phenomenon can be attributed to private car users who, 
after completing their morning commutes, tend to charge their vehicles at their 
destinations for use the next day. The evening to night charging peak is influenced by a 
combination of public and private vehicles, as people finish work and start returning to 
their starting points during this time, resulting in higher charging demand in these areas. 
It is evident that there are significant differences in the geographical distribution of EV 
charging demand across different time periods. Therefore, it is particularly crucial to 
study and predict EV charging demand by incorporating road network analysis. This 
approach aids in the rational planning of charging infrastructure layout to meet the 
charging needs of different areas at various times, thereby enhancing the efficiency and 
convenience of the charging network. 

6.1.2 Clustering results 
The optimal clustering results, derived through iteration with reference to the DBI 
parameter, are shown in the following Figure 6: 

Figure 6 After clustering the charging needs, the cluster centres and their influence ranges are 
reflected in the road network (see online version for colours) 

 

As shown in the Figure 6, the asterisks represent the cluster centres corresponding to the 
distribution network node numbers and the positions of the road network nodes. A total 
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of eight cluster centres were generated in the figure, each represented by a different 
colour to show their influence areas. Observing the influence areas, it can be seen that 
Cluster Centre 11, located on the west side, covers the widest area, reaching 6 nodes. 
This is because this area is set as the starting point for most private cars, belonging to a 
residential area where the roads are generally clear and the road impedance is generally 
low, resulting in less user travel loss. The central and eastern parts of the road network 
model have more cluster centres, and most of the covered areas are smaller. This is due to 
the road network model simulating congested traffic conditions, making it difficult for 
users to travel in this area, and the cost of going to charging stations is higher. The  
24-hour charging demand for each cluster centre node is shown in Figure 7: 

Figure 7 The time-space distribution of charging demand at each cluster centre after 24 hours of 
clustering (see online version for colours) 

 

As shown in the Figure 7, the charging demand after clustering has been greatly 
simplified compared to before clustering, and the number of cluster centres and the 
corresponding charging demand can serve as a reference in the planning process of EV 
charging stations. Therefore, in the subsequent iterations of the bi-level planning model, 
the initial iteration will propose the deployment of 8 charging stations, and the initial 
locations will be set at the nodes where the cluster centres are located. 

6.2 Charging station and network planning results 

The planning scheme for lines and charging stations derived from MATLAB code 
programming is shown in Figure 8: 

As shown in Figure 8, the distribution network topology, combined with the site 
selection and capacity planning for charging stations, not only meets the needs of the 
distribution network under normal load conditions but also successfully addresses the 
spatial and temporal distribution of EV charging demands through the implementation of 
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a two-layer optimisation strategy. The study spans a time frame of 20 years, during which 
the upper-level planning objective function achieved an optimal result with a value of 
2.43 million Yuan. In scenarios with a smaller number of charging stations, although the 
construction and operational costs are relatively low, EV users have to travel longer 
distances to reach the charging stations, which not only increases their travel time but 
may also lead to longer waiting times at the stations, thus making the total charging cost 
relatively high. However, as the number of charging stations gradually increases, 
although the construction and operational costs will rise, the travel distance and waiting 
time for EV users to reach the charging stations will decrease accordingly, which helps to 
reduce the users' charging costs. Based on the planning model we proposed and the 
number of cluster centres shown in Figure 6, the most suitable number of EV charging 
stations to invest in and build within this area is determined to be 8. Such planning 
enables the lower-level planning objective function to achieve an optimal result, with a 
value of 3.54 million Yuan. Specific details on the capacity investment can be referenced 
in Table A6 in the appendix. 

Figure 8 Distribution network lines and charging station planning map 

 

6.3 Comparative analysis of algorithmic calculation efficiency 

Case analysis indicates that MPSO, compared to traditional PSO and other optimisation 
algorithms, can better balance the interests between charging station operators and users, 
further verifying its application value in practical engineering problems. Figure 9 is a 
comparative diagram: 
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Figure 9 MPSO algorithm efficiency compared to other traditional algorithms chart 

 

In Figure 9, the iteration efficiency comparison among MPSO, traditional PSO, genetic 
algorithm (GA), and differential evolution (DM) is shown. It is evident that although 
MPSO's ability to find the optimal value is slightly weaker in the initial iterations, as the 
iterations progress, it achieves the best numerical results among the four algorithms. 
Moreover, its computational speed is only second to the differential evolution algorithm. 
Therefore, in terms of optimisation ability and solution speed, MPSO can ensure the 
global optimality of the final results by preventing premature convergence to local 
optima, and it can also enhance the solution efficiency to some extent. 

6.4 Cluster validity verification based on confidence level 

Confidence level is an important indicator for measuring the reliability of clustering 
results, reflecting the representativeness of the cluster centres to the actual fluctuation of 
charging demand. The higher the confidence level, the more accurately the cluster centres 
can capture the characteristics of the charging demand of nodes; conversely, when the 
confidence level is low, the clustering results may not fully reflect the fluctuation 
characteristics of charging demand. To verify the effectiveness of the charging demand 
clustering method based on road weight, this paper introduces different confidence levels 
(Wang, 2023), taking 85%, 90%, 95%, and 100% as examples, limiting the number of 
iterations to 1,000, and analysing the representativeness of the cluster centres to the 
charging demand and its impact on the planning results of charging stations under various 
confidence levels. 
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As shown in Table 1, under a 100% confidence level, the cluster centres can fully 
capture the fluctuation of charging demand for all nodes. In this case, the planning 
scheme for charging stations strictly optimises based on the clustered charging demand. 
Although the construction cost of charging stations in high-confidence schemes is higher, 
due to the smaller number and reasonable layout of charging stations, the queuing time 
for users during peak hours is significantly reduced, and the charging cost is greatly 
decreased. At the same time, stable grid operating conditions further increase the 
electricity sales revenue of charging stations, maximising the overall economic benefits. 
In addition, high-confidence schemes can better balance the distribution network load, 
reducing the risk of high load on distribution network lines during the same period, 
thereby effectively controlling the node voltage deviation. 
Table 1 Cost and revenue of EV charging station planning schemes at different confidence 

levels 

Cost and revenue (10,000 Yuan) 100% 95% 90% 85% 
Average annual investment cost 20.5 19.8 18.6 17.5 
User charging cost 7.2 8.0 9.1 10.3 
Average annual electricity sales revenue 24.5 23.8 22.4 21.0 
Total revenue from charging stations (20 years) 354.4 338 326 310 

In contrast, under a lower confidence level (such as 85%), due to the weakened ability of 
the cluster centres to capture the fluctuation of charging demand, some of the larger 
fluctuations in charging demand are not fully reflected. This clustering result leads to a 
significant increase in the number of charging stations in the planning scheme, and the 
layout of charging stations becomes overly dispersed. Although dispersed charging 
stations are beneficial for the charging experience of EV users and reduce the charging 
cost for users, each charging station requires additional land purchase costs, and the 
planning scheme with a large number of small-capacity charging stations significantly 
increases the construction cost of charging stations. Moreover, too many users charging 
on the distribution network at the same time will lead to a significant increase in line load 
peaks, causing node voltage deviation to worsen, and the voltage of some nodes may 
even drop significantly. At the same time, larger node voltage deviations may affect the 
operational stability of grid equipment, indirectly reducing the electricity sales revenue of 
charging stations, and lowering the overall economic benefits. 

By comparing the results of different confidence levels, it can be seen that the change 
in confidence level directly affects the simplification of charging demand and the quality 
of planning schemes. In high-confidence schemes (such as 100%), the number of 
charging stations is smaller and the layout is more reasonable, most users can charge 
orderly based on queuing theory, the distribution of distribution network load is evenly 
distributed, and node voltage deviation is significantly reduced. While low-confidence 
schemes (such as 85%) result in lower planning costs for charging stations due to the 
overly dispersed charging demand, but the charging cost increases, and the operational 
safety of the distribution network is also adversely affected. 

In summary, introducing confidence level as a measure can significantly enhance the 
scientific nature of clustering methods and the rationality of charging station planning. 
Especially in high-confidence levels, the planning scheme can more accurately reflect the 
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distribution of charging demand, optimise the operation of the distribution network, and 
balance investment returns with user needs. 

6.5 Comparison of node voltage deviation in high/low confidence level 
planning results 

In distribution network planning, node voltage deviation refers to the deviation between 
the actual voltage of a node and the reference voltage, usually expressed as a percentage. 
When the node voltage deviation is too large, it may affect the safe and stable operation 
of the distribution network, and could even damage user equipment. The base voltage 
adopted in the study is 10kV and the base capacity is 10 MVA. On this basis, the 
charging station load is combined with traditional loads, and the planning results under 
different confidence levels (100% and 85%) are compared. The fixed number of 
iterations is set to 1,000, and the voltage deviation of each node is analysed. 

As shown in Figure 10, at an 85% confidence level, due to the more dispersed 
prediction of charging demand, the number of charging stations invested in the planning 
results is larger, leading to a more decentralised layout of charging stations. Although this 
planning approach reduces the load pressure on individual charging stations, the 
simultaneous connection of too many users to the distribution network for charging at 
certain times causes a sharp increase in the load on the distribution network lines, further 
triggering a significant drop in node voltage. As a result, the voltage deviation of some 
nodes even exceeds –5%, indicating that this planning scheme cannot effectively alleviate 
the voltage deviation problem during peak charging demand. 

Figure 10 Node voltage deviation corresponding to the planning results at 85% confidence level 
(see online version for colours) 

 

In contrast, as shown in Figure 11, at a 100% confidence level, the prediction of charging 
demand is more concentrated, and the number of charging stations in the planning results 
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is relatively small, but the layout is more reasonable. Most users' charging behaviour is 
based on a queuing theory model and proceeds in an orderly manner. Due to the 
centralised distribution of charging stations after planning, the load on the distribution 
network is more effectively allocated at the same time, significantly reducing the line 
load pressure, thereby significantly improving the deviation of node voltage, with the 
maximum deviation being only –4.4%. These results indicate that the planning scheme at 
a high confidence level can not only retain the distribution characteristics of charging 
demand but also effectively reduce the instantaneous load on the distribution network, 
optimising the stability of node voltage. 

Figure 11 Node voltage deviation corresponding to the planning results at 100% (see online 
version for colours) 

 

In summary, the charging demand clustering method based on road weights significantly 
enhances the scientific nature of distribution network planning through a two-layer 
optimisation. In the planning results at a high confidence level, the charging load is more 
reasonably allocated, which not only improves computational efficiency but also 
optimises the safety and stability of grid operation. This further verifies the practical 
application value of the method proposed in this paper for charging station planning and 
distribution network optimisation. 

7 Conclusions 

This paper proposes a two-layer optimisation model based on road network simulation of 
EV charging demand, and the conclusions drawn from typical case analysis are as 
follows: 
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Using road network simulation to generate the charging demand of EVs ensures that 
the charging demand data has both spatial and temporal dimensions, providing more 
realistic and detailed charging load distribution information for charging station planning. 

The clustering algorithm with the concept of road weight, while ensuring the 
distribution characteristics of charging demand, effectively clusters the charging demand 
in space and maintains the characteristics of peak and valley changes in EV charging 
demand over time, which is conducive to subsequent calculations. 

The two-layer optimisation model fully considers the development needs of both 
sides during the process of distribution network topology expansion and charging station 
site selection and capacity planning, reducing the voltage deviation of the distribution 
network. 

Further research needs to consider the impact of EVs as mobile energy storage 
devices participating in V2G (vehicle to grid) (Fesli and Ozdemir, 2024; Tetik Kollugil  
et al., 2024) on the planning of charging stations and the operation of distribution 
networks. 
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Appendix 

Figure A1 Topology of IEEE 33-node distribution network 
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Figure A2 Calibrated road weights network topology map 
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Figure A3 DBI index and 24-hour cumulative charging demand (see online version for colours) 

 

Figure A4 Algorithm comparison (see online version for colours) 
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Table A1 Summary table of travel and charging characteristics indicators and parameters for 
three types of vehicles 

TYPE Private Public Taxi 
Start Time Normal distribution N(8, 

1²) 
Normal distribution 

N(6, 0.5²) 
Normal distribution N(6, 

0.5²) 

Return time Normal distribution N(17, 
1²) 

Normal distribution 
N(17, 1²) 

Normal distribution N(17, 
1²)v 

Battery 
capacity 

Gamma 
distribution 

1
pC  = 

60KW⋅h 
α1 =10.08 
β1 = 0.08 

Gamma 
distribution 

2
pC  = 

60KW⋅h 
α2 =4.5 
β2 =6.3 

Gamma 
distribution 

3
pC  = 

90KW⋅h 
α3 = 8.7 
β3 = 3.2 

Initial SOC Normal distribution 
N(0.6, 0.1²) 

Average 
speed 

Normal distribution Normal distribution Normal distribution 

N(40, 1²) N(30, 2²) N(45, 1²) 

Table A2 Grid planning related parameters 

Investment node Number of charging piles 
Grid construction discount rate 0.12 
Line service life 20 Years 
Construction cost per unit length of line 3,000 Yuan/metre 
Electricity selling price (peak, flat, valley) 1.2/0.8/0.4 (Yuan/kw⋅h) 

Table A3 Charging station planning model parameters 

Basic parameters Value Basic parameters Value 
Discount rate 0.12 Operation and maintenance 

cost conversion factor 
0.02 

Charging station operation 
years 

20 years Charging power of a charging 
pile/kW 

60 

Price of charging pile 10,000 
Yuan/unit 

Charging power of a charging 
pile/% 

95 

Charging station auxiliary 
facilities cost 

30,000 
Yuan/seat 

User charging service 
fee/(Yuan⋅(kW⋅h)–1) 

0.8 

User time cost/(Yuan⋅h–1) 50 Land price/(Yuan/m2) 14,500 
Area occupied by a single 
charging pile 

2.5m2/unit Electricity selling price (peak, 
flat, valley) 

1.6/1/0.6 
(Yuan/kw⋅h) 
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Table A4 Cluster centre and pulled node list 

Cluster centre corresponding 
distribution network node number 

Distribution network nodes pulled by the cluster 
centre 

7 6 7 8 
26 9 21 25 26 31 
11 5 10 11 12 15 16 
14 13 14 20 
18 17 18 19 23 
27 22 27 32 
29 24 28 29 30 
1 1 2 3 4 

Table A5 IEEE33 distribution network line data 

Line number Starting node Endpoint node Line resistance Line reactance 
1 1 2 0.0922 0.047 
2 2 3 0.493 0.2511 
3 3 4 0.366 0.1864 
4 4 5 0.3811 0.1941 
5 5 6 0.819 0.707 
6 6 7 0.1872 0.6188 
7 7 8 0.7114 0.2351 
8 8 9 1.03 0.74 
9 9 10 1.044 0.74 
10 10 11 0.1966 0.065 
11 11 12 0.3744 0.1238 
12 12 13 1.468 1.155 
13 13 14 0.5416 0.7129 
14 14 15 0.591 0.526 
15 15 16 0.7463 0.545 
16 16 17 1.289 1.721 
17 17 18 0.732 0.574 
18 2 19 0.164 0.1565 
19 19 20 1.5042 1.3554 
20 20 21 0.4095 0.4784 
21 21 22 0.7089 0.9373 
22 3 23 0.4512 0.3083 
23 23 24 0.898 0.7091 
24 24 25 0.896 0.7011 
25 6 26 0.203 0.1034 
26 26 27 0.2842 0.1447 
27 27 28 1.059 0.9337 
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Table A5 IEEE33 distribution network line data (continued) 

Line number Starting node Endpoint node Line resistance Line reactance 
28 28 29 0.8042 0.7006 
29 29 30 0.5075 0.2585 
30 30 31 0.9744 0.963 
31 31 32 0.3105 0.3619 
32 32 33 0.341 0.5302 
33 8 21 2 0.3122 
34 9 15 2 0.622 
35 12 22 2 0.423 
36 18 33 0.5 0.555 
37 25 29 0.5 0.535 

Table A6 Charging station investment nodes and capacities 

Investment node Number of charging piles 
3 4 
11 5 
13 4 
18 3 
21 4 
24 5 
28 6 
32 5 

Table A7 Conventional load of distribution network 

Node number Active power（KW） Reactive power (KVA) 

1 0 0 
2 100 60 
3 90 40 
4 120 80 
5 60 30 
6 60 20 
7 200 100 
8 200 100 
9 60 20 
10 60 20 
11 45 30 
12 60 35 
13 60 35 
14 120 80 
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Table A7 Conventional load of distribution network (continued) 

Node number Active power（KW） Reactive power (KVA) 

15 60 10 
16 60 20 
17 60 20 
18 90 40 
19 90 40 
20 90 40 
21 90 40 
22 90 40 
23 90 50 
24 420 200 
25 420 200 
26 60 25 
27 60 25 
28 60 20 
29 120 70 
30 200 600 
31 150 70 
32 210 100 
33 60 40 

 


