A novel Supervised Instance Selection algorithm
by Shirish S. Sane, Ashok A. Ghatol
International Journal of Business Intelligence and Data Mining (IJBIDM), Vol. 2, No. 4, 2007

Abstract: Instance selection is often used in case of lazy classifiers. This paper addresses the need of instance selection in case of neural network and decision tree classifiers and presents a novel Supervised Instance Selection (SIS) algorithm. Initially, a neural network classifier is constructed using all training instances. The algorithm then selects a few instances using the certainty values of the wrapped neural network to construct a compact classifier. Empirical study made with standard datasets shows that SIS save on 70% of storage space without degrading the accuracy. It is independent of nature of the dataset and the tool used.

Online publication date: Sun, 23-Dec-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Intelligence and Data Mining (IJBIDM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com