Knowledge actionability: satisfying technical and business interestingness Online publication date: Sun, 23-Dec-2007
by Longbing Cao, Dan Luo, Chengqi Zhang
International Journal of Business Intelligence and Data Mining (IJBIDM), Vol. 2, No. 4, 2007
Abstract: Traditionally, knowledge actionability has been investigated mainly by developing and improving technical interestingness. Recently, initial work on technical subjective interestingness and business-oriented profit mining presents general potential, while it is a long-term mission to bridge the gap between technical significance and business expectation. In this paper, we propose a two-way significance framework for measuring knowledge actionability, which highlights both technical interestingness and domain-specific expectations. We further develop a fuzzy interestingness aggregation mechanism to generate a ranked final pattern set balancing technical and business interests. Real-life data mining applications show the proposed knowledge actionability framework can complement technical interestingness while satisfy real user needs.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Intelligence and Data Mining (IJBIDM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com