A rating model simulation for risk analysis Online publication date: Fri, 11-Jan-2008
by Greta Falavigna
International Journal of Business Performance Management (IJBPM), Vol. 10, No. 2/3, 2008
Abstract: This study analyses the situation of a bank that wants to create an Internal Rating System (IRB). A credit institute can decide to simulate rating judgements from an external rating agency, like Standard and Poor's or Moody's or Fitch Rating. This research compares different frameworks of neural networks, hybrid neuro-fuzzy model and logit/probit model, used to simulate the rating of an external agency. Initially, the models are divided into eight rating classes but the mean percentage error is big. Hence, a two-stage hybrid neuro-fuzzy framework is built, in which the model correctly distinguishes the firms into three macroclasses and then, for each macroclass, a hybrid model divides the firms into eight different classes. This two-stage framework provides good results.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Performance Management (IJBPM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com