Classification of proteomic data with multiclass Logistic Partial Least Squares algorithm Online publication date: Sun, 17-Feb-2008
by Zhenqiu Liu, Dechang Chen, Jianjun Paul Tian
International Journal of Bioinformatics Research and Applications (IJBRA), Vol. 4, No. 1, 2008
Abstract: Early detection of cancer is crucial for successful treatments. In this paper, we propose a multiclass Logistic Partial Least Squares (LPLS) algorithm for classification of normal vs. cancer using Mass Spectrometry (MS). LPLS combines the multiclass logistic regression with Partial Least Squares (PLS) algorithm. Wavelet decomposition is also proposed for pre-processing of original data. Wavelet decomposition and the proposed LPLS are applied to real life cancer data. Experimental comparisons show that LPLS with wavelet decomposition outperforms other methods in the analysis of MS data.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bioinformatics Research and Applications (IJBRA):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com