Towards practicable sensors using one-dimensional nanostructures
by Chris A. Berven, Vladimir V. Dobrokhotov
International Journal of Nanotechnology (IJNT), Vol. 5, No. 4/5, 2008

Abstract: Nanomaterials, including nanoparticles, nanowires, nanotubes etc., are the object of much well deserving attention by researchers and the public alike. Because of their novel properties associated with their typically large surface to volume ratios and finite- or quantum-size effects, they offer an avenue of exploration for new and interesting physics, chemistry, biology and materials science. Before it is possible to take advantage of these materials, an understanding of their fundamental properties is needed. Even with an understanding of these properties, in order to create practicable devices, the details of how changes in these fundamental properties (e.g., band-structures) manifest themselves as changes in practically measurable properties (e.g., the current-voltage characteristics) is needed. This review article will examine some recent work that focused on these issues. The first topic is the use of mats of gold-nanoparticle-decorated GaN nanowires as a gas sensor. The second and third developed the theory of using carbon nanotubes as elements of real-world sensors for ions and magnetic fields.

Online publication date: Fri, 07-Mar-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com