Cell formation with ordinal-level data using ART1-based neural networks
by R. SudhakaraPandian, S.S. Mahapatra
International Journal of Services and Operations Management (IJSOM), Vol. 4, No. 5, 2008

Abstract: In Cell Formation Problem (CFP), the zero-one Part Machine Incidence Matrix (PMIM) is the common input to any clustering algorithm. The output is generated with two or more machine cells and corresponding part families. The major demerit with such models is that real-life production factors such as operation time, sequence of operations and lot size of the product are not accounted for. In this paper, the operation sequence of the parts is considered to enhance the quality of the solution. A neural network-based algorithm is proposed to solve the CFP. The performance of the proposed algorithm is tested with example problems and the results are compared with the existing methods found in the literature. The results presented clearly shows that the performance of the proposed ART1-based algorithm is comparable with the other methods.

Online publication date: Sat, 26-Apr-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Services and Operations Management (IJSOM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com