Message Passing Clustering (MPC): a knowledge-based framework for clustering under biological constraints Online publication date: Sat, 28-Jun-2008
by Huimin Geng, Xutao Deng, Hesham H. Ali
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 2, No. 2, 2008
Abstract: A new clustering algorithm, Message Passing Clustering (MPC), is proposed. MPC employs the concept of message passing to describe parallel and spontaneous clustering process by allowing data objects to communicate with each other. MPC also provides an extensible framework to accommodate additional features into clustering, such as adaptive feature weights scaling, stochastic cluster merging, and semi-supervised constraints guiding. Extensive experiments were performed using both simulation and real microarray gene expression and phylogenetic data. The results showed that MPC performed favourably to other popular clustering algorithms and MPC with the integration of additional features gave even higher accuracy rate than MPC.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com