Predicting diffusion of innovative products using neural networks
by Somnath Mukhopadhyay
International Journal of Management and Decision Making (IJMDM), Vol. 9, No. 4, 2008

Abstract: Predicting market growths of innovative products are essential for policy makers, market planners and various hardware and software companies. However, it is difficult to find a model that generalises because both internal and external factors influence the growth process. This study investigated models based on diffusion and connectionist theories to predict diffusions of innovative products. This paper shows that a simple Multi-Layered Perceptron (MLP) neural network can create a very flexible response function to forecast generic diffusion patterns of innovation processes. This study compared performances of MLP and diffusion models on simulated data with varying degrees of uncertainties. MLP models outperformed diffusion models.

Online publication date: Wed, 09-Jul-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Management and Decision Making (IJMDM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com