Closed multidimensional sequential pattern mining
by Panida Songram, Veera Boonjing
International Journal of Knowledge Management Studies (IJKMS), Vol. 2, No. 4, 2008

Abstract: We propose a new method, called closed multidimensional sequential pattern mining, for mining multidimensional sequential patterns. The new method is an integration of closed sequential pattern mining and closed itemset pattern mining. This integration is performed in two approaches: mining closed itemset patterns followed by mining closed sequential patterns and mining closed sequential patterns followed by mining closed itemset patterns. For the new method, it is shown that (1) the number of complete closed multidimensional sequential patterns is not larger than the number of complete multidimensional sequential patterns; (2) the set of complete closed multidimensional sequential patterns covers the complete resulting set of multidimensional sequential patterns. In addition, mining using closed itemset pattern mining on multidimensional information would mine only multidimensional information associated with mined closed sequential patterns, and mining using closed sequential pattern mining on sequences would mine only sequences associated with mined closed itemset patterns. Moreover, we experimentally investigated using these two integration approaches to determine factors affecting the number of candidate patterns. The experiment results show that the first approach gives less number of patterns than the second on the datasets with few dimensions. For the data sets with many dimensions, the results are opposite.

Online publication date: Tue, 29-Jul-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Knowledge Management Studies (IJKMS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com