Numerical modelling of 3D hard turning using arbitrary Lagrangian Eulerian finite element method Online publication date: Fri, 24-Oct-2008
by P.J. Arrazola, T. Ozel
International Journal of Machining and Machinability of Materials (IJMMM), Vol. 4, No. 1, 2008
Abstract: In this paper, 3D Finite Element Method (FEM)-based numerical modelling of precision hard turning has been studied to investigate the effects of chamfered edge geometry on tool forces, temperatures and stresses in machining of AISI 52100 steel using low-grade Polycrystalline Cubic Boron Nitrite (PCBN) inserts. An Arbitrary Lagrangian Eulerian (ALE)-based numerical modelling is employed for 3D precision hard turning. The Johnson-Cook plasticity model is used to describe the work material behaviour. A detailed friction modelling at the tool-chip and tool-work interfaces is also carried. Work material flow around the chamfer geometry of the cutting edge is carefully modelled with adaptive meshing simulation capability. In process simulations, feed rate and cutting speed were kept constant and analysis was focused on forces, temperatures and tool stresses. Results revealed good agreements between FEM results and those reported in literature about experimental ones.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Machining and Machinability of Materials (IJMMM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com