Artificial cognition for autonomous planar vehicles: modelling collision avoidance and collective manoeuvre
by Vladimir Ivancevic, Eugene Aidman, Leong Yen
International Journal of Intelligent Defence Support Systems (IJIDSS), Vol. 1, No. 2, 2008

Abstract: A hierarchical cognitive robotics model for a team of unattended robotic ground vehicles (UGVs) is proposed. The first level rigorously defines conflict resolution for a couple of UGVs, using dynamical games on SE(2)-groups of plane motion. The second level extends it to n UGVs, using Nash-equilibrium approach. The third provides adaptive guidance for several groups of UGVs. The fourth, collective manoeuvre level, proposes a combination of an attractor neural model and a fuzzy-neural 'supervisor', to perform an adaptive path definition and waypoints selection, as well as chaos control. The fifth, cognitive level, performs overall mission planning/feedback control.

Online publication date: Thu, 11-Dec-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Defence Support Systems (IJIDSS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com