The semantic connectivity map: an adapting self-organising knowledge discovery method in data bases. Experience in gastro-oesophageal reflux disease
by Massimo Buscema, Enzo Grossi
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 2, No. 4, 2008

Abstract: We describe here a new mapping method able to find out connectivity traces among variables thanks to an artificial adaptive system, the Auto Contractive Map (AutoCM), able to define the strength of the associations of each variable with all the others in a dataset. After the training phase, the weights matrix of the AutoCM represents the map of the main connections between the variables. The example of gastro-oesophageal reflux disease data base is extremely useful to figure out how this new approach can help to re-design the overall structure of factors related to complex and specific diseases description.

Online publication date: Sun, 21-Dec-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com