A Bayesian learning of probabilistic relations between perceptual attributes and technical characteristics of car dashboards to construct a perceptual evaluation model
by Walid Ben Ahmed, Bernard Yannou
International Journal of Product Development (IJPD), Vol. 7, No. 1/2, 2009

Abstract: Starting from a primary perceptual evaluation of a set of car dashboards, we propose to build a Bayesian network (BN) between perceptual attributes and design attributes. Two types of learning processes may be considered: supervised BN when the prediction on a targeted attribute must be optimised and unsupervised BN otherwise. These two types of BNs are considered along three design simulation scenarios: the direct scenario which consists of the prediction of a design change impact on customer perceptions, the inverse scenario for fixing design characteristics so as to result in an expected customer perception, and a more realistic combined scenario.

Online publication date: Thu, 25-Dec-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Product Development (IJPD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com