Optimisation and data mining techniques for the screening of epileptic patients Online publication date: Tue, 24-Mar-2009
by Ya-Ju Fan, Wanpracha A. Chaovalitwongse, Chang-Chia Liu, Rajesh C. Sachdeo, Leonidas D. Iasemidis, Panos M. Pardalos
International Journal of Bioinformatics Research and Applications (IJBRA), Vol. 5, No. 2, 2009
Abstract: Identifying abnormalities or anomalies by visual inspection on neurophysiologic signals such as ElectroEncephaloGrams (EEGs), is extremely challenging. We propose a novel Multi-Dimensional Time Series (MDTS) classification technique, called Connectivity Support Vector Machines (C-SVMs) that integrates brain connectivity network with SVMs. To alter noise in EEG data, Independent Component Analysis based on the Unbiased Quasi Newton Method was applied. C-SVM achieved 94.8% accuracy classifying subjects compared to 69.4% accuracy with standard SVMs. It suggests that C-SVM can be a rapid, yet accurate, technique for online differentiation between epileptic and normal subjects. It may solve other classification MDTS problems too.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bioinformatics Research and Applications (IJBRA):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com