Dynamic task scheduling with load balancing using parallel orthogonal particle swarm optimisation
by S.N. Sivanandam, P. Visalakshi
International Journal of Bio-Inspired Computation (IJBIC), Vol. 1, No. 4, 2009

Abstract: This paper presents a novel approach for dynamic task scheduling using particle swarm optimisation. Particle swarm optimisation (PSO) is a population-based meta-heuristic method which can be used to solve np-hard problems. The algorithm has been developed to dynamically schedule heterogeneous tasks on to heterogeneous processors in a distributed setup. Load balancing which is a major issue in task scheduling is also considered. The nature of the tasks are independent and non pre-emptive. Different approaches using PSO has been tried namely PSO with fixed inertia, PSO with variable inertia, PSO with elitism, MPSO, parallel PSO, hybrid PSO, orthogonal PSO and parallel orthogonal PSO. The performance of PSO and its variants is also compared with the genetic algorithm concept. The objective of the algorithms is to minimise the make-span of the entire schedule. Benchmark problems have been taken and validated. The result depicts that the dynamic task scheduling implemented using parallel orthogonal particle swarm optimisation technique is cost-effective in nature when compared to the other algorithms tested.

Online publication date: Tue, 28-Apr-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com