Engine performance and emissions from the combustion of low-temperature Fischer–Tropsch synthetic diesel fuel and biodiesel rapeseed methyl ester blends Online publication date: Wed, 06-May-2009
by Kampanart Theinnoi, Athanasios Tsolakis, Sathaporn Chuepeng, Andrew P.E. York, Roger F. Cracknell, Richard H. Clark
International Journal of Vehicle Design (IJVD), Vol. 50, No. 1/2/3/4, 2009
Abstract: The combustion of oxygenated biodiesel (rapeseed methyl ester (RME)) improves the engine-out particulate matter, hydrocarbon and carbon monoxide (CO) emissions, while the low-temperature Fischer–Tropsch synthetic paraffinic diesel fuel improves engine-out NOx, CO, hydrocarbon and particulate matter emissions. Blending synthetic diesel (SD) fuel with oxygenated biodiesel could unlock potential performance synergies in the fuel properties (e.g. O2 content in RME and high cetane number of the synthetic fuels) of such blends and benefit engine performance and emissions. The combustion of synthetic diesel fuel/RME blend, named synthetic diesel B50, has shown similar combustion characteristics to diesel fuel, while simultaneous improvements in engine efficiency and smoke-NOx trade-off were achieved by taking advantage of the fuel's properties. The engine thermal efficiency was dependent on the fuel type, and followed the general trend: synthetic diesel > SDB50 > diesel > RME. Therefore, it has been shown that the design of a synthetic fuel with properties similar to the fuel blends presented in this work could improve engine-out NOx, smoke and hydrocarbon emissions and maintain or improve engine performance.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com