Optimisation of surface roughness in hard turning AISI D2 steel using TSK-type fuzzy logic rules Online publication date: Sat, 16-May-2009
by Arup Kumar Nandi, J. Paulo Davim
International Journal of Materials and Product Technology (IJMPT), Vol. 35, No. 1/2, 2009
Abstract: In the present work, an intelligent method is adopted to optimise the machining parameters to obtain a desired surface roughness on AISI D2 steel in Hard turning operations. In order to perform the turning operation a ceramic insert tool is used. The task of this optimisation is carried out by two stages: in the first stage, a rule-based model is constructed based on experimental (training) data, and later, a genetic algorithm (GA) is used to optimise the critical machining parameters based on this model as predictor. Developing a suitable model for a machining process is a difficult and primary task for optimisation of machining process. Due to non-linearity of the cutting parameters, tool-work combination and rigidity of machine tool, it has been shown that mathematical or analytical approaches failed to develop models for manufacturing processes.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Product Technology (IJMPT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com