Neural network process modelling for turning of steel parts using conventional and wiper inserts
by Tugrul Ozel, A. Esteves Correia, J. Paulo Davim
International Journal of Materials and Product Technology (IJMPT), Vol. 35, No. 1/2, 2009

Abstract: In this paper, the effects of insert design in turning of steel parts are presented. Surface finishing has been investigated in finish turning of AISI 1045 steel using conventional and wiper design inserts. Regression models and neural network models are developed for predicting surface roughness, mean force and cutting power. Experimental results indicate that lower surface roughness values are attainable with wiper tools. Neural network based predictions of surface roughness are carried out and compared with non-training experimental data. These results show that neural network models are suitable for predicting surface roughness patterns for a range of cutting conditions in turning.

Online publication date: Sat, 16-May-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Product Technology (IJMPT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com