A fuzzy-rough case-based learning approach for intelligent die design Online publication date: Sat, 20-Jun-2009
by Chi Zhou, Feng Ruan, QingXiang Xia, ZhenYuan Huang
International Journal of Computer Applications in Technology (IJCAT), Vol. 35, No. 2/3/4, 2009
Abstract: Tacit knowledge plays an important role in stamping die design, but it is hard to be mined and reused. This paper presents a fuzzy-rough approach of mining rules from existing successful die designs, which improves learning capability of intelligent stamping die design systems. The core of the learning mechanism includes: (1) a feature-based case representation, (2) fuzzification of feature attributes, (3) a fuzzy classification method to partition the cases into clusters based on similarities, (4) a rough set theory-based approach to compute attribute reduct and mine rules. A case base containing 53 bending features was used to test the proposed approach. 38 If-Then rules were mined after computing, and these rules could preserve the basic properties of the origin decision table. The results show that this approach can speed up the retrieval process of the case-based systems and reduce the difficulties in acquiring and updating rules for the rule-based systems.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com