Extended precision with a rounding mode toward zero environment. Application to the Cell processor
by Hong Diep Nguyen, Stef Graillat, Jean-Luc Lamotte
International Journal of Reliability and Safety (IJRS), Vol. 3, No. 1/2/3, 2009

Abstract: In the field of scientific computing, the exactness of the calculation is of prime importance. That leads to efforts made to increase the precision of the floating point algorithms. One of them is to increase the precision of the floating point number to double or quadruple the working precision. The building block of these efforts is the Error-Free Transformations (EFT). In this paper, we develop EFT operations in truncation rounding mode optimised for the Cell processor. They have been implemented and used in double precision library using only single precision numbers. We compare the performance of our library with the native one in double precision on vectors operations. In the best case, the performance of our library is very closed to the standard double precision implementation. The work could be easily extended to obtain quadruple precision.

Online publication date: Sat, 27-Jun-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reliability and Safety (IJRS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com