A life cycle greenhouse gas emissions perspective on liquid fuels from unconventional Canadian and US fossil sources
by Jennifer M. McKellar, Alex D. Charpentier, Joule A. Bergerson, Heather L. MacLean
International Journal of Global Warming (IJGW), Vol. 1, No. 1/2/3, 2009

Abstract: The life cycle Greenhouse Gas (GHG) emissions associated with the production and use of transportation fuels from conventional and unconventional fossil fuel sources in Canada and the USA are investigated. The studied pathways include reformulated gasoline and low sulphur diesel produced from oil sands, oil shale, coal and natural gas, as well as reference pathways from conventional crude oil. comparison of Life Cycle Assessments (LCAs) completed for these fuels indicates considerable uncertainty in these emissions, illustrating the need for further LCAs with particular attention to completeness and transparency. Based on the considered studies, only one unconventional pathway has better GHG emissions performance than the conventional pathways: Fischer-Tropsch diesel from natural gas. However, the limitations of the data used here and other factors that may restrict a switch to natural gas must be considered. Furthermore, there are considerable opportunities to reduce emissions from the unconventional pathways. There is significant potential to produce liquid transportation fuels from unconventional Canadian and US fossil sources. However, to avoid significant increases in GHG emissions, the life cycle GHG implications of almost all pathways will need to be reduced to respond to upcoming regulatory initiatives and to move towards a more sustainable transportation sector.

Online publication date: Tue, 14-Jul-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Global Warming (IJGW):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com