Multiple data structure discovery through global optimisation, meta clustering and consensus methods Online publication date: Mon, 19-Oct-2009
by Ida Bifulco, Carmine Fedullo, Francesco Napolitano, Giancarlo Raiconi, Roberto Tagliaferri
International Journal of Knowledge Engineering and Soft Data Paradigms (IJKESDP), Vol. 1, No. 4, 2009
Abstract: When dealing with real data, clustering becomes a very complex problem, usually admitting many reasonable solutions. Moreover, even if completely different, such solutions can appear almost equivalent from the point of view of classical quality measures such as the distortion value. This implies that blind optimisation techniques alone are prone to discard qualitatively interesting solutions. In this work we propose a systematic approach to clustering, including the generation of a number of good solutions through global optimisation, the analysis of such solutions through meta clustering and the final construction of a small set of solutions through consensus clustering.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Knowledge Engineering and Soft Data Paradigms (IJKESDP):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com